organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o363-o364

4-[(1-Benzyl-1,2,3-triazol-5-yl)meth­yl]-2H-1,4-benzo­thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pharmacochimie, Avenue Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: nk_sebbar@yahoo.fr

(Received 14 February 2014; accepted 19 February 2014; online 26 February 2014)

The asymmetric unit of the title compound, C18H16N4OS, contains two independent mol­ecules of similar conformation, the most relevant difference being the dihedral angle formed by the benzene rings [57.8 (2) and 52.7 (2)°]. The six-membered heterocycle of the benzo­thia­zine fragment exhibits a screw-boat conformation in both mol­ecules. The plane through the triazole ring is nearly perpendicular to those through the fused and terminal benzene rings [dihedral angles of 74.2 (2) and 83.2 (2)° in one mol­ecule, and 77.8 (2) and 82.9 (2)° in the other]. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds into chains parallel to the a-axis direction. The crystal used was a non-merohedral twin, the refined ratio of twin components being 0.85 (10):15 (10).

Related literature

For the biological activity and pharmaceutical properties of benzo­thia­zines and their derivatives, see: Chia et al. (2008[Chia, E. W., Pearce, A. N., Berridge, M. V., Larsen, L., Perry, N. B., Sansom, C. E., Godfrey, C. A., Hanton, L. R., Lu, G. L., Walton, M., Denny, W. A., Webb, V. L., Copp, B. R. & Harper, J. L. (2008). Bioorg. Med. Chem. 16, 9432-9442.]); Baraza­rte et al. (2008[Barazarte, A., Camacho, J., Dominguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661-3674.]); Takemoto et al. (1994[Takemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788-789.]); Yaltirik et al. (2001[Yaltirik, M., Oral, C. K., Oral, I., Kasaboglu, G. & Cebi, V. (2001). Turk. J. Med. Sci. 11, 151-154.]). For a related structure, see: Sebbar et al. (2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160-o161.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4OS

  • Mr = 336.41

  • Orthorhombic, P n a 21

  • a = 34.5438 (15) Å

  • b = 6.0102 (2) Å

  • c = 15.6138 (7) Å

  • V = 3241.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.41 × 0.36 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.645, Tmax = 0.746

  • 32914 measured reflections

  • 6623 independent reflections

  • 4634 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.167

  • S = 1.04

  • 6623 reflections

  • 434 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2 0.97 2.56 3.452 (5) 153
C7—H7B⋯N3i 0.97 2.54 3.508 (5) 173
C17—H17B⋯N6ii 0.97 2.53 3.413 (5) 151
C25—H25B⋯N7iii 0.97 2.49 3.454 (5) 176
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzothiazine derivatives have extensively been studied in different areas of chemistry including the pharmaceutical and other chemical industries. With respect to biological applications, these derivatives have been found to be potent anti-inflammatories (Chia et al., 2008), anti-microbials (Barazarte et al., 2008), herbicidals (Takemoto et al., 1994) and fungicidals (Yaltirik et al., 2001). The present work is a continuation of the investigation of the benzothiazine derivatives published recently by our team, including the isomer of the present compound (Sebbar et al., 2014).

Each independent molecule of the title compound is build up from two fused six-membered rings linked to a triazol ring which is attached to a benzyl group as shown in Fig. 1. The 1,4-thiazine ring adopts a screw boat conformation as indicated by the puckering amplitude (S1/N4/C11/C16–C18) Q = 0.692 (4) Å, and spherical polar angle θ = 114.6 (3)°, with φ = 142.6 (4)°; (S2/N8/C29/C34–C36) Q = 0.676 (3) Å, and spherical polar angle θ = 64.3 (3)°, with φ = 321.0 (4)° (Cremer & Pople, 1975).

In one molecule (S1/O1/N1–N4/C1–C18), the triazol ring (N1/N2/N3/C8/C9) makes dihedral angles of 74.2 (2)° and 83.2 (2)°, with the benzene fused to the 1,4-thiazine ring (C11–C16) and the other benzene ring (C1–C6), respectively. Moreover, the dihedral angle between the two benzene rings is of 57.8 (2)°. Nearly the same values are observed in the second molecule (S2/O2/N5–N8/C19–C36; 77.8 (2)°; 82.9 (2)° and 52.7 (2)°). The most important differences between the conformations of the present molecule and its isomer, recently published, are the values of the dihedral angles between the benzene rings. In the crystal, the molecules are linked by intermolecular C–H···N and C–H···O hydrogen interactions (Table 1) to form wavy chains parallel to the a axis.

Related literature top

For the biological activity and pharmaceutical properties of benzothiazines and their derivatives, see: Chia et al. (2008); Barazarte et al. (2008); Takemoto et al. (1994); Yaltirik et al. (2001). For a related structure, see: Sebbar et al. (2014). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzothiazin-3-one (0.27 g, 0.35 mmol) and benzylazide (1.34 ml, 0.35 mmol) in ethanol (5 ml) was stirred at room temperature for 24 h. After cooling, the solid obtained was purified by column chromatography on silica gel with ethyl acetate-hexane (1:2 v/v) as eluent. Crystals were isolated when the solvent was allowed to evaporate at room temperature.

Refinement top

All H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C). The crystal used for the diffraction study was a non-merohedral twin (twin law 1 0 0, 0 -1 0, 0 0 -1) with a 0.85 (10): 15 (10) domain ratio. The reported Flack parameter was obtain by the TWIN/BASF procedure in SHELXL-97 (Sheldrick, 2008)

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
4-[(1-Benzyl-1,2,3-triazol-5-yl)methyl]-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C18H16N4OSF(000) = 1408
Mr = 336.41Dx = 1.379 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6623 reflections
a = 34.5438 (15) Åθ = 1.2–26.4°
b = 6.0102 (2) ŵ = 0.21 mm1
c = 15.6138 (7) ÅT = 296 K
V = 3241.7 (2) Å3Block, colourless
Z = 80.41 × 0.36 × 0.28 mm
Data collection top
Bruker X8 APEX
diffractometer
6623 independent reflections
Radiation source: fine-focus sealed tube4634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 26.4°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4343
Tmin = 0.645, Tmax = 0.746k = 57
32914 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0979P)2]
where P = (Fo2 + 2Fc2)/3
6623 reflections(Δ/σ)max < 0.001
434 parametersΔρmax = 0.61 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C18H16N4OSV = 3241.7 (2) Å3
Mr = 336.41Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 34.5438 (15) ŵ = 0.21 mm1
b = 6.0102 (2) ÅT = 296 K
c = 15.6138 (7) Å0.41 × 0.36 × 0.28 mm
Data collection top
Bruker X8 APEX
diffractometer
6623 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4634 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.746Rint = 0.059
32914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.167H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
6623 reflectionsΔρmin = 0.23 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31692 (12)0.4325 (6)0.1447 (3)0.0545 (11)
H10.30940.55300.17820.065*
C20.31671 (15)0.4529 (8)0.0576 (4)0.0704 (14)
H20.30910.58600.03230.084*
C30.32759 (13)0.2787 (9)0.0081 (4)0.0687 (14)
H30.32700.29240.05120.082*
C40.33941 (13)0.0825 (8)0.0443 (3)0.0628 (12)
H40.34730.03570.01000.075*
C50.33950 (11)0.0624 (6)0.1323 (3)0.0509 (10)
H50.34740.07070.15720.061*
C60.32804 (11)0.2370 (6)0.1843 (3)0.0417 (10)
C70.32913 (12)0.2159 (6)0.2803 (3)0.0462 (10)
H7A0.35560.18920.29860.055*
H7B0.32060.35450.30590.055*
C80.25772 (13)0.1859 (6)0.3428 (3)0.0478 (10)
H80.23320.24640.35080.057*
C90.26532 (10)0.0219 (5)0.3095 (3)0.0394 (8)
C100.23912 (10)0.2045 (6)0.2791 (3)0.0459 (10)
H10A0.23410.30770.32550.055*
H10B0.25150.28560.23280.055*
C110.20359 (10)0.0363 (6)0.1767 (2)0.0398 (8)
C120.22918 (13)0.0036 (7)0.1102 (3)0.0605 (11)
H120.24410.13230.11000.073*
C130.23244 (16)0.1462 (10)0.0451 (4)0.0809 (16)
H130.24870.11460.00080.097*
C140.21204 (18)0.3443 (10)0.0458 (4)0.0811 (17)
H140.21620.45190.00410.097*
C150.18533 (15)0.3777 (8)0.1101 (4)0.0730 (15)
H150.17010.50530.10910.088*
C160.18064 (11)0.2289 (6)0.1749 (3)0.0453 (10)
C170.13479 (12)0.0198 (7)0.2700 (3)0.0652 (12)
H17A0.12630.08330.21600.078*
H17B0.11420.03770.31150.078*
C180.17070 (11)0.1349 (6)0.3005 (3)0.0469 (9)
C190.58380 (12)0.4007 (6)0.6217 (3)0.0507 (10)
H190.59160.53480.59760.061*
C200.58469 (14)0.3719 (8)0.7105 (4)0.0634 (13)
H200.59250.48930.74530.076*
C210.57425 (12)0.1738 (8)0.7474 (3)0.0630 (13)
H210.57600.15380.80630.076*
C220.56089 (13)0.0029 (7)0.6947 (3)0.0621 (12)
H220.55280.13060.71910.075*
C230.55945 (11)0.0290 (6)0.6070 (3)0.0513 (10)
H230.55060.08660.57250.062*
C240.57126 (10)0.2294 (5)0.5702 (3)0.0374 (9)
C250.57129 (12)0.2524 (6)0.4742 (3)0.0476 (11)
H25A0.59760.27640.45470.057*
H25B0.56200.11500.44890.057*
C260.50118 (12)0.6660 (6)0.4162 (3)0.0477 (10)
H260.47700.73260.41050.057*
C270.50797 (10)0.4601 (5)0.4493 (2)0.0354 (8)
C280.48073 (10)0.2863 (5)0.4814 (3)0.0413 (9)
H28A0.47520.18010.43630.050*
H28B0.49240.20690.52900.050*
C290.44632 (11)0.5389 (5)0.5809 (2)0.0399 (9)
C300.47044 (13)0.4886 (6)0.6500 (3)0.0524 (10)
H300.48370.35410.65190.063*
C310.47433 (16)0.6435 (9)0.7163 (3)0.0686 (14)
H310.49000.60860.76280.082*
C320.45615 (16)0.8412 (9)0.7149 (3)0.0707 (15)
H320.46030.94430.75830.085*
C330.43120 (13)0.8897 (7)0.6482 (3)0.0592 (12)
H330.41781.02390.64840.071*
C340.42577 (11)0.7403 (6)0.5807 (3)0.0446 (10)
C350.37906 (11)0.5172 (6)0.4797 (3)0.0542 (11)
H35A0.36830.45490.53180.065*
H35B0.35940.51130.43540.065*
C360.41402 (11)0.3868 (5)0.4525 (3)0.0409 (9)
N10.30457 (8)0.0352 (4)0.3104 (2)0.0390 (7)
N20.31989 (10)0.1534 (5)0.3427 (2)0.0535 (9)
N30.29094 (11)0.2861 (5)0.3615 (3)0.0555 (10)
N40.20276 (8)0.1095 (4)0.2491 (2)0.0401 (7)
N50.54672 (9)0.4385 (5)0.4449 (2)0.0399 (7)
N60.56333 (10)0.6217 (5)0.4108 (2)0.0506 (8)
N70.53574 (10)0.7587 (5)0.3928 (3)0.0506 (9)
N80.44458 (8)0.3937 (4)0.50956 (19)0.0367 (7)
O10.17165 (10)0.2455 (5)0.3667 (3)0.0691 (10)
O20.41597 (9)0.2844 (4)0.3865 (2)0.0570 (8)
S10.14594 (4)0.2667 (2)0.25665 (9)0.0732 (4)
S20.39377 (3)0.79990 (17)0.49747 (8)0.0568 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (3)0.045 (2)0.059 (3)0.0026 (17)0.005 (2)0.0008 (19)
C20.074 (3)0.070 (3)0.067 (4)0.001 (2)0.004 (3)0.021 (3)
C30.056 (3)0.102 (4)0.048 (3)0.001 (3)0.001 (2)0.016 (3)
C40.055 (3)0.089 (3)0.044 (3)0.007 (2)0.010 (2)0.016 (2)
C50.049 (2)0.051 (2)0.052 (3)0.0045 (17)0.001 (2)0.0030 (19)
C60.0362 (19)0.0440 (18)0.045 (3)0.0080 (15)0.0001 (18)0.0056 (16)
C70.046 (2)0.056 (2)0.036 (3)0.0117 (17)0.0081 (18)0.0084 (17)
C80.058 (3)0.0445 (19)0.041 (2)0.0044 (17)0.002 (2)0.0004 (17)
C90.045 (2)0.0394 (17)0.034 (2)0.0005 (14)0.0036 (17)0.0054 (15)
C100.042 (2)0.0408 (18)0.055 (3)0.0035 (15)0.0070 (19)0.0036 (17)
C110.037 (2)0.0474 (18)0.035 (2)0.0070 (15)0.0046 (17)0.0024 (16)
C120.060 (3)0.071 (3)0.051 (3)0.000 (2)0.008 (2)0.003 (2)
C130.084 (4)0.113 (4)0.045 (3)0.029 (3)0.004 (3)0.012 (3)
C140.099 (4)0.090 (4)0.055 (4)0.026 (3)0.018 (3)0.032 (3)
C150.079 (3)0.060 (3)0.081 (4)0.006 (2)0.034 (3)0.023 (3)
C160.049 (2)0.0470 (19)0.040 (3)0.0022 (16)0.016 (2)0.0030 (16)
C170.041 (2)0.102 (3)0.053 (3)0.001 (2)0.004 (2)0.001 (3)
C180.048 (2)0.054 (2)0.039 (2)0.0079 (17)0.0021 (19)0.0021 (18)
C190.054 (2)0.0416 (18)0.057 (3)0.0028 (16)0.000 (2)0.0030 (18)
C200.064 (3)0.069 (3)0.057 (3)0.004 (2)0.012 (2)0.018 (2)
C210.056 (3)0.088 (3)0.044 (3)0.017 (2)0.005 (2)0.013 (3)
C220.057 (3)0.071 (3)0.058 (3)0.004 (2)0.003 (2)0.026 (2)
C230.049 (2)0.0446 (19)0.060 (3)0.0015 (16)0.005 (2)0.0013 (18)
C240.0345 (19)0.0371 (16)0.041 (3)0.0065 (14)0.0008 (17)0.0044 (15)
C250.045 (2)0.0491 (19)0.049 (3)0.0112 (16)0.0013 (19)0.0002 (17)
C260.046 (2)0.0428 (18)0.054 (3)0.0065 (16)0.004 (2)0.0080 (18)
C270.037 (2)0.0363 (15)0.033 (2)0.0030 (13)0.0005 (15)0.0024 (14)
C280.040 (2)0.0343 (15)0.050 (3)0.0043 (14)0.0010 (18)0.0017 (16)
C290.045 (2)0.0394 (17)0.035 (2)0.0078 (15)0.0049 (17)0.0024 (15)
C300.063 (3)0.052 (2)0.042 (3)0.0080 (18)0.011 (2)0.0059 (19)
C310.086 (4)0.086 (3)0.034 (3)0.033 (3)0.012 (2)0.002 (2)
C320.087 (4)0.079 (3)0.046 (3)0.035 (3)0.015 (3)0.028 (3)
C330.064 (3)0.053 (2)0.061 (3)0.0151 (19)0.023 (3)0.018 (2)
C340.049 (2)0.0431 (17)0.042 (3)0.0002 (16)0.0155 (19)0.0027 (16)
C350.036 (2)0.068 (2)0.059 (3)0.0004 (18)0.009 (2)0.001 (2)
C360.043 (2)0.0403 (16)0.040 (2)0.0063 (15)0.0034 (18)0.0043 (17)
N10.0372 (17)0.0434 (14)0.0364 (18)0.0033 (12)0.0053 (14)0.0031 (13)
N20.063 (2)0.0571 (18)0.041 (2)0.0148 (17)0.0057 (17)0.0015 (16)
N30.070 (2)0.0505 (18)0.046 (3)0.0011 (17)0.0018 (19)0.0076 (16)
N40.0350 (16)0.0415 (14)0.0437 (19)0.0027 (12)0.0031 (14)0.0066 (14)
N50.0453 (19)0.0398 (14)0.0346 (18)0.0024 (12)0.0012 (14)0.0017 (13)
N60.052 (2)0.0502 (17)0.050 (2)0.0095 (15)0.0064 (17)0.0097 (16)
N70.059 (2)0.0418 (15)0.051 (3)0.0060 (15)0.0006 (18)0.0095 (14)
N80.0411 (16)0.0348 (13)0.0342 (17)0.0004 (11)0.0022 (14)0.0016 (13)
O10.085 (2)0.0756 (19)0.047 (2)0.0087 (17)0.0052 (18)0.0166 (15)
O20.066 (2)0.0606 (15)0.044 (2)0.0043 (14)0.0107 (16)0.0147 (14)
S10.0715 (8)0.0856 (8)0.0625 (9)0.0403 (6)0.0057 (7)0.0059 (7)
S20.0524 (6)0.0563 (5)0.0617 (8)0.0170 (4)0.0037 (6)0.0024 (5)
Geometric parameters (Å, º) top
C1—C21.366 (7)C19—H190.9300
C1—C61.382 (6)C20—C211.370 (7)
C1—H10.9300C20—H200.9300
C2—C31.354 (7)C21—C221.394 (7)
C2—H20.9300C21—H210.9300
C3—C41.370 (7)C22—C231.380 (7)
C3—H30.9300C22—H220.9300
C4—C51.380 (7)C23—C241.396 (5)
C4—H40.9300C23—H230.9300
C5—C61.384 (5)C24—C251.504 (7)
C5—H50.9300C25—N51.477 (5)
C6—C71.506 (7)C25—H25A0.9700
C7—N11.456 (5)C25—H25B0.9700
C7—H7A0.9700C26—C271.361 (5)
C7—H7B0.9700C26—N71.368 (5)
C8—N31.329 (5)C26—H260.9300
C8—C91.378 (5)C27—N51.347 (4)
C8—H80.9300C27—C281.493 (5)
C9—N11.358 (4)C28—N81.473 (4)
C9—C101.500 (5)C28—H28A0.9700
C10—N41.457 (4)C28—H28B0.9700
C10—H10A0.9700C29—C301.396 (5)
C10—H10B0.9700C29—C341.403 (5)
C11—C121.384 (6)C29—N81.416 (4)
C11—C161.403 (5)C30—C311.399 (7)
C11—N41.431 (5)C30—H300.9300
C12—C131.363 (7)C31—C321.344 (7)
C12—H120.9300C31—H310.9300
C13—C141.384 (8)C32—C331.382 (7)
C13—H130.9300C32—H320.9300
C14—C151.378 (9)C33—C341.398 (6)
C14—H140.9300C33—H330.9300
C15—C161.360 (7)C34—S21.743 (5)
C15—H150.9300C35—C361.501 (5)
C16—S11.766 (5)C35—S21.795 (4)
C17—C181.498 (6)C35—H35A0.9700
C17—S11.777 (5)C35—H35B0.9700
C17—H17A0.9700C36—O21.202 (5)
C17—H17B0.9700C36—N81.382 (5)
C18—O11.230 (5)N1—N21.349 (4)
C18—N41.376 (5)N2—N31.312 (5)
C19—C241.377 (6)N5—N61.351 (4)
C19—C201.398 (8)N6—N71.290 (4)
C2—C1—C6121.5 (5)C23—C22—C21120.9 (4)
C2—C1—H1119.2C23—C22—H22119.6
C6—C1—H1119.2C21—C22—H22119.6
C3—C2—C1119.8 (5)C22—C23—C24119.7 (4)
C3—C2—H2120.1C22—C23—H23120.1
C1—C2—H2120.1C24—C23—H23120.1
C2—C3—C4120.9 (6)C19—C24—C23119.8 (4)
C2—C3—H3119.6C19—C24—C25120.9 (4)
C4—C3—H3119.6C23—C24—C25119.3 (4)
C3—C4—C5119.1 (5)N5—C25—C24112.2 (3)
C3—C4—H4120.4N5—C25—H25A109.2
C5—C4—H4120.4C24—C25—H25A109.2
C4—C5—C6121.1 (4)N5—C25—H25B109.2
C4—C5—H5119.4C24—C25—H25B109.2
C6—C5—H5119.4H25A—C25—H25B107.9
C1—C6—C5117.5 (5)C27—C26—N7108.8 (3)
C1—C6—C7121.6 (4)C27—C26—H26125.6
C5—C6—C7120.8 (4)N7—C26—H26125.6
N1—C7—C6111.7 (3)N5—C27—C26103.8 (3)
N1—C7—H7A109.3N5—C27—C28125.2 (3)
C6—C7—H7A109.3C26—C27—C28130.9 (3)
N1—C7—H7B109.3N8—C28—C27109.1 (3)
C6—C7—H7B109.3N8—C28—H28A109.9
H7A—C7—H7B107.9C27—C28—H28A109.9
N3—C8—C9109.2 (4)N8—C28—H28B109.9
N3—C8—H8125.4C27—C28—H28B109.9
C9—C8—H8125.4H28A—C28—H28B108.3
N1—C9—C8103.9 (3)C30—C29—C34119.4 (3)
N1—C9—C10124.2 (3)C30—C29—N8120.0 (3)
C8—C9—C10131.9 (4)C34—C29—N8120.5 (3)
N4—C10—C9109.6 (3)C29—C30—C31119.0 (4)
N4—C10—H10A109.8C29—C30—H30120.5
C9—C10—H10A109.8C31—C30—H30120.5
N4—C10—H10B109.8C32—C31—C30122.1 (5)
C9—C10—H10B109.8C32—C31—H31118.9
H10A—C10—H10B108.2C30—C31—H31118.9
C12—C11—C16119.2 (4)C31—C32—C33119.3 (4)
C12—C11—N4120.0 (3)C31—C32—H32120.3
C16—C11—N4120.7 (3)C33—C32—H32120.3
C13—C12—C11119.9 (5)C32—C33—C34121.1 (4)
C13—C12—H12120.1C32—C33—H33119.5
C11—C12—H12120.1C34—C33—H33119.5
C12—C13—C14121.3 (5)C33—C34—C29119.0 (4)
C12—C13—H13119.3C33—C34—S2121.0 (3)
C14—C13—H13119.3C29—C34—S2120.0 (3)
C15—C14—C13118.2 (5)C36—C35—S2108.1 (3)
C15—C14—H14120.9C36—C35—H35A110.1
C13—C14—H14120.9S2—C35—H35A110.1
C16—C15—C14121.7 (5)C36—C35—H35B110.1
C16—C15—H15119.2S2—C35—H35B110.1
C14—C15—H15119.2H35A—C35—H35B108.4
C15—C16—C11119.4 (4)O2—C36—N8121.7 (3)
C15—C16—S1122.3 (4)O2—C36—C35123.7 (4)
C11—C16—S1118.3 (3)N8—C36—C35114.6 (3)
C18—C17—S1107.8 (3)N2—N1—C9110.2 (3)
C18—C17—H17A110.2N2—N1—C7121.3 (3)
S1—C17—H17A110.2C9—N1—C7128.5 (3)
C18—C17—H17B110.2N3—N2—N1107.2 (3)
S1—C17—H17B110.2N2—N3—C8109.5 (3)
H17A—C17—H17B108.5C18—N4—C11123.0 (3)
O1—C18—N4121.9 (4)C18—N4—C10117.6 (3)
O1—C18—C17122.6 (4)C11—N4—C10118.4 (3)
N4—C18—C17115.5 (4)C27—N5—N6111.3 (3)
C24—C19—C20119.6 (4)C27—N5—C25128.9 (3)
C24—C19—H19120.2N6—N5—C25119.7 (3)
C20—C19—H19120.2N7—N6—N5107.0 (3)
C21—C20—C19121.2 (4)N6—N7—C26109.1 (3)
C21—C20—H20119.4C36—N8—C29123.9 (3)
C19—C20—H20119.4C36—N8—C28116.2 (3)
C20—C21—C22118.7 (5)C29—N8—C28117.9 (3)
C20—C21—H21120.6C16—S1—C1796.1 (2)
C22—C21—H21120.6C34—S2—C3595.77 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.972.563.452 (5)153
C7—H7B···N3i0.972.543.508 (5)173
C17—H17B···N6ii0.972.533.413 (5)151
C25—H25B···N7iii0.972.493.454 (5)176
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.972.563.452 (5)153
C7—H7B···N3i0.972.543.508 (5)173
C17—H17B···N6ii0.972.533.413 (5)151
C25—H25B···N7iii0.972.493.454 (5)176
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z; (iii) x, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBarazarte, A., Camacho, J., Dominguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). Bioorg. Med. Chem. 16, 3661–3674.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChia, E. W., Pearce, A. N., Berridge, M. V., Larsen, L., Perry, N. B., Sansom, C. E., Godfrey, C. A., Hanton, L. R., Lu, G. L., Walton, M., Denny, W. A., Webb, V. L., Copp, B. R. & Harper, J. L. (2008). Bioorg. Med. Chem. 16, 9432–9442.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160–o161.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788–789.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaltirik, M., Oral, C. K., Oral, I., Kasaboglu, G. & Cebi, V. (2001). Turk. J. Med. Sci. 11, 151–154.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o363-o364
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds