metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κO)bis­­(thio­urea-κS)cobalt(II)

aBijvoet Center for Biomolecular Research, Crystal and Structural Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
*Correspondence e-mail: m.lutz@uu.nl

(Received 27 January 2014; accepted 29 January 2014; online 5 February 2014)

The title compound, [Co(CH3COO)2(CH4N2S)2], is isotypic with the corresponding ZnII complex. The metal atom is in a distorted tetra­hedral coordination environment with the two S atoms from two thio­urea ligands and two O atoms from two acetate anions as the coordinating atoms. All H atoms of the thio­urea ligands are involved in N—H⋯O and N—H⋯S hydrogen bonds, leading to a three-dimensional network.

Related literature

For the isotypic ZnII compound, see: Cavalca et al. (1967[Cavalca, L., Gasparri, G. F., Andreetti, D. & Domiano, P. (1967). Acta Cryst. 22, 90-98.]). For a definition of tetra­hedral distortion, see: Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H3O2)2(CH4N2S)2]

  • Mr = 329.26

  • Monoclinic, P 21 /c

  • a = 7.15257 (16) Å

  • b = 17.2864 (4) Å

  • c = 11.7372 (3) Å

  • β = 112.275 (1)°

  • V = 1342.92 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 150 K

  • 0.26 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.]) Tmin = 0.730, Tmax = 0.871

  • 27333 measured reflections

  • 3087 independent reflections

  • 2898 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.04

  • 3087 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O3 1.9462 (8)
Co1—O1 1.9847 (8)
Co1—S1 2.3291 (3)
Co1—S2 2.3299 (3)
O3—Co1—O1 101.57 (3)
O3—Co1—S1 112.22 (3)
O1—Co1—S1 95.07 (2)
O3—Co1—S2 117.69 (3)
O1—Co1—S2 117.47 (3)
S1—Co1—S2 110.445 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.830 (18) 1.959 (18) 2.7717 (14) 165.8 (16)
N1—H2⋯O2ii 0.877 (16) 1.959 (17) 2.8324 (14) 173.6 (14)
N2—H3⋯S1iii 0.881 (19) 2.859 (19) 3.7200 (12) 165.7 (15)
N2—H4⋯S2i 0.825 (16) 2.810 (16) 3.5080 (11) 143.5 (14)
N2—H4⋯O4i 0.825 (16) 2.613 (17) 3.2479 (15) 134.8 (14)
N3—H5⋯O1iv 0.810 (16) 2.482 (16) 3.1759 (13) 144.5 (14)
N3—H6⋯O2 0.810 (17) 2.038 (17) 2.8388 (14) 169.6 (16)
N4—H7⋯O1iv 0.848 (16) 2.108 (17) 2.8994 (14) 155.3 (14)
N4—H8⋯O3v 0.808 (17) 2.176 (16) 2.8452 (13) 140.3 (14)
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: Peakref (Schreurs, 2013[Schreurs, A. M. M. (2013). Peakref. Utrecht University, The Netherlands.]); data reduction: Eval15 (Schreurs et al., 2010[Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70-82.]) and SADABS (Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.]); program(s) used to solve structure: initial coordinates from the literature (Cavalca et al., 1967[Cavalca, L., Gasparri, G. F., Andreetti, D. & Domiano, P. (1967). Acta Cryst. 22, 90-98.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

The crystal structure of bisthiourea-zinc acetate has been described in the literature in the centrosymmetric space group P21/c (Cavalca et al., 1967). The corresponding cobalt compound was mentioned to be isotypic but no coordinates or further structural information were given. We therefore set out to crystallize the title compound and to determine its crystal structure.

It could indeed be confirmed that the title compound is isotypic with the zinc complex from the literature. The coordinates of the Zn compound were used as starting model for the least-squares refinement of the present Co structure. The metal center is in a distorted tetrahedral environment with two S atoms from two thiourea ligands and two O atoms from two acetate molecules as coordinating atoms (Figure 1). Coordination angles between 95.07 (2) and 117.69 (3) ° lead to an angle variance (Robinson et al., 1971) of 81.93 °2. The two Co—S distances are equal within standard uncertainties and are, as expected, longer than the Co—O distances. With a difference of 0.0385 (11) Å, the Co1—O1 distance is significantly longer than the Co1—O3 distance. A possible explanation for this difference are the hydrogen bonding interactions (Table 2). O1 the is acceptor of two hydrogen bonds, while O3 is the acceptor of only one.

A comparison of the Co environment of the present study with the Zn environment from the literature (Cavalca et al., 1967) remains inconclusive because of the large standard uncertainties of the Zn structure, which had been obtained at room temperature from film data. The difference in the two metal-S distances described for the Zn complex could not be detected in the Co complex (see Table).

The quality of the present low-temperature study allowed a detailed analysis of the H atoms. In the difference-Fourier maps, the two methyl groups of the acetate ligands appeared to be orientationally disordered. In the refinement, an idealized disorder model was used with a 60 ° rotation between the disorder forms. This disorder model was allowed to rotate about the C—C bond, and the H atom occupancies were refined. In the case of C3, the major disorder form has an occupancy of 0.881 (17) and is eclipsed with respect to the carboxylate [H3A—C3—C4—O4 - 9 °]. The major component at C5 has an occupancy of 0.626 (17)% and is in gauche conformation to the carboxylate [H5A—C5—C6—O1 - 32 °]. In the crystal packing, the methyl groups are surrounded only by other methyl groups.

All H atoms of the thiourea ligands are donors of hydrogen bonds (Table 2). O1 and O4 are bifurcated acceptors of hydrogen bonds, and H4 is a bifurcated hydrogen bond donor (Figure 2). The angle sum at H4 is 358 (2) °. The intermolecular hydrogen bonds involving H5 and H7 as donors and O1 as acceptor result in a one-dimensional chain in the [201] direction. Together with the hydrogen bonds of H2 in the [001] and H8 in the [100] direction, a two-dimensional hydrogen bonded network is formed in the a,c plane. These two-dimensional sheets are linked in the b direction via centrosymmetric ring-type hydrogen bonds involving H1 and H4 (graph set R22(16), symmetry code 1 - x, -y, -z), and H3 (graph set R22(8), symmetry code -x, -y, -z). H6 is involved in an intramolecular hydrogen bond with O2 as acceptor. Overall this is a hydrogen bonded three-dimensional network.

Related literature top

For the isotypic ZnII compound, see: Cavalca et al. (1967). For a definition of tetrahedral distortion, see: Robinson et al. (1971).

Experimental top

0.23 g Cobalt(II) acetate tetrahydrate (0.92 mmol) and 0.14 g thiourea (1.84 mmol) were dissolved in deionized water and slowly evaporated at room temperature. Colourless needle-shaped crystals of thiourea and blue block-shaped crystals of the title compound were obtained.

Refinement top

The methyl groups were refined with a model of perfect disorder using the SHELXL instruction AFIX 127. The occupancies of the disorder components were refined and the sum of the occupancies was constrained to 1. The H atoms of the thiourea ligands were refined freely with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: Peakref (Schreurs, 2013); data reduction: Eval15 (Schreurs et al., 2010) and SADABS (Sheldrick, 2012); program(s) used to solve structure: initial coordinates from the literature (Cavalca et al., 1967); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as small spheres of arbitrary radii. Only the major conformations of the rotationally disordered methyl groups are shown.
[Figure 2] Fig. 2. : Hydrogen bonds involving the bifurcated acceptor atoms O1 and O4, and the bifurcated donor atom H4. Overall, the crystal structure consists of a three-dimensional hydrogen bonded network. Methyl H atoms are omitted in the drawing. Symmetry codes: (i) x + 1, 1/2 - y, z + 1/2; (ii) 1 - x, -y, -z.
Bis(acetato-κO)bis(thiourea-κS)cobalt(II) top
Crystal data top
[Co(C2H3O2)2(CH4N2S)2]F(000) = 676
Mr = 329.26Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.15257 (16) ÅCell parameters from 23812 reflections
b = 17.2864 (4) Åθ = 1.9–27.5°
c = 11.7372 (3) ŵ = 1.60 mm1
β = 112.275 (1)°T = 150 K
V = 1342.92 (5) Å3Block, blue
Z = 40.26 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII
diffractometer
2898 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Sheldrick, 2012)
h = 99
Tmin = 0.730, Tmax = 0.871k = 2222
27333 measured reflectionsl = 1515
3087 independent reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: difference Fourier map
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0204P)2 + 0.4848P]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Co(C2H3O2)2(CH4N2S)2]V = 1342.92 (5) Å3
Mr = 329.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.15257 (16) ŵ = 1.60 mm1
b = 17.2864 (4) ÅT = 150 K
c = 11.7372 (3) Å0.26 × 0.15 × 0.10 mm
β = 112.275 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
3087 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2012)
2898 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.871Rint = 0.018
27333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
3087 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.17413 (2)0.17567 (2)0.01182 (2)0.01481 (5)
S10.00290 (4)0.08869 (2)0.14310 (3)0.01872 (7)
S20.48512 (4)0.20539 (2)0.00160 (2)0.01697 (6)
O10.03808 (12)0.25675 (5)0.04056 (7)0.01876 (16)
O20.16498 (12)0.33000 (5)0.11096 (8)0.02399 (18)
O30.17158 (12)0.14576 (5)0.17108 (8)0.02089 (17)
O40.42393 (13)0.06561 (5)0.19563 (9)0.02632 (19)
N10.26745 (16)0.03991 (6)0.23051 (10)0.0241 (2)
H10.362 (3)0.0120 (10)0.2305 (15)0.037 (4)*
H20.226 (2)0.0787 (9)0.2822 (15)0.029 (4)*
N20.25861 (17)0.02779 (6)0.06544 (10)0.0235 (2)
H30.207 (3)0.0340 (10)0.0085 (16)0.042 (5)*
H40.351 (2)0.0564 (9)0.0652 (14)0.030 (4)*
N30.55520 (16)0.26384 (6)0.22516 (10)0.0212 (2)
H50.626 (2)0.2701 (9)0.2971 (15)0.026 (4)*
H60.439 (3)0.2784 (9)0.1970 (15)0.030 (4)*
N40.82560 (15)0.21118 (7)0.19799 (10)0.0224 (2)
H70.898 (2)0.2240 (9)0.2711 (15)0.027 (4)*
H80.877 (2)0.1869 (9)0.1586 (15)0.027 (4)*
C10.19179 (16)0.02918 (6)0.14601 (10)0.0174 (2)
C20.63192 (16)0.22861 (6)0.15317 (10)0.0155 (2)
C30.2882 (2)0.07120 (8)0.35350 (11)0.0268 (3)
H3A0.37610.02650.38710.040*0.881 (17)
H3B0.14870.05760.34090.040*0.881 (17)
H3C0.33280.11460.41130.040*0.881 (17)
H3D0.19560.10600.37240.040*0.119 (17)
H3E0.42310.07480.41870.040*0.119 (17)
H3F0.23900.01790.34830.040*0.119 (17)
C40.29873 (16)0.09407 (6)0.23235 (10)0.0169 (2)
C50.16131 (19)0.37960 (8)0.01005 (12)0.0276 (3)
H5A0.23940.37770.09900.041*0.626 (17)
H5B0.10010.43090.01250.041*0.626 (17)
H5C0.25090.36950.03400.041*0.626 (17)
H5D0.15420.40770.06400.041*0.374 (17)
H5E0.29350.35450.04750.041*0.374 (17)
H5F0.14270.41590.06900.041*0.374 (17)
C60.00216 (17)0.31923 (6)0.02420 (10)0.0172 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01240 (8)0.01554 (8)0.01686 (8)0.00185 (5)0.00595 (6)0.00089 (5)
S10.01406 (12)0.01684 (13)0.02354 (14)0.00173 (10)0.00521 (10)0.00399 (10)
S20.01458 (12)0.02337 (14)0.01401 (12)0.00060 (10)0.00661 (10)0.00146 (10)
O10.0178 (4)0.0179 (4)0.0189 (4)0.0044 (3)0.0050 (3)0.0015 (3)
O20.0168 (4)0.0255 (4)0.0263 (4)0.0029 (3)0.0044 (3)0.0068 (3)
O30.0172 (4)0.0251 (4)0.0222 (4)0.0067 (3)0.0094 (3)0.0051 (3)
O40.0249 (4)0.0251 (4)0.0342 (5)0.0095 (4)0.0171 (4)0.0058 (4)
N10.0229 (5)0.0224 (5)0.0298 (6)0.0090 (4)0.0131 (4)0.0048 (4)
N20.0241 (5)0.0192 (5)0.0259 (5)0.0065 (4)0.0079 (4)0.0020 (4)
N30.0149 (5)0.0302 (5)0.0172 (5)0.0031 (4)0.0047 (4)0.0068 (4)
N40.0148 (5)0.0321 (6)0.0200 (5)0.0034 (4)0.0063 (4)0.0052 (4)
C10.0146 (5)0.0130 (5)0.0211 (5)0.0013 (4)0.0028 (4)0.0049 (4)
C20.0148 (5)0.0162 (5)0.0164 (5)0.0005 (4)0.0068 (4)0.0004 (4)
C30.0283 (6)0.0313 (7)0.0209 (6)0.0026 (5)0.0094 (5)0.0038 (5)
C40.0142 (5)0.0171 (5)0.0184 (5)0.0018 (4)0.0049 (4)0.0009 (4)
C50.0242 (6)0.0221 (6)0.0324 (7)0.0096 (5)0.0060 (5)0.0012 (5)
C60.0171 (5)0.0174 (5)0.0192 (5)0.0027 (4)0.0091 (4)0.0009 (4)
Geometric parameters (Å, º) top
Co1—O31.9462 (8)N3—H60.810 (17)
Co1—O11.9847 (8)N4—C21.3169 (14)
Co1—S12.3291 (3)N4—H70.848 (16)
Co1—S22.3299 (3)N4—H80.808 (17)
S1—C11.7420 (11)C3—C41.5051 (16)
S2—C21.7356 (11)C3—H3A0.9800
O1—C61.2889 (14)C3—H3B0.9800
O2—C61.2365 (14)C3—H3C0.9800
O3—C41.2833 (14)C3—H3D0.9800
O4—C41.2338 (14)C3—H3E0.9800
N1—C11.3107 (16)C3—H3F0.9800
N1—H10.830 (18)C5—C61.5039 (15)
N1—H20.877 (16)C5—H5A0.9800
N2—C11.3227 (15)C5—H5B0.9800
N2—H30.881 (19)C5—H5C0.9800
N2—H40.825 (16)C5—H5D0.9800
N3—C21.3181 (14)C5—H5E0.9800
N3—H50.810 (16)C5—H5F0.9800
O3—Co1—O1101.57 (3)C4—C3—H3E109.5
O3—Co1—S1112.22 (3)H3A—C3—H3E56.3
O1—Co1—S195.07 (2)H3B—C3—H3E141.1
O3—Co1—S2117.69 (3)H3C—C3—H3E56.3
O1—Co1—S2117.47 (3)H3D—C3—H3E109.5
S1—Co1—S2110.445 (11)C4—C3—H3F109.5
C1—S1—Co1101.21 (4)H3A—C3—H3F56.3
C2—S2—Co1102.52 (4)H3B—C3—H3F56.3
C6—O1—Co1115.82 (7)H3C—C3—H3F141.1
C4—O3—Co1117.42 (7)H3D—C3—H3F109.5
C1—N1—H1119.2 (12)H3E—C3—H3F109.5
C1—N1—H2120.3 (10)O4—C4—O3122.41 (11)
H1—N1—H2120.2 (15)O4—C4—C3121.89 (11)
C1—N2—H3119.4 (11)O3—C4—C3115.70 (10)
C1—N2—H4121.4 (11)C6—C5—H5A109.5
H3—N2—H4119.2 (16)C6—C5—H5B109.5
C2—N3—H5119.0 (11)H5A—C5—H5B109.5
C2—N3—H6119.7 (11)C6—C5—H5C109.5
H5—N3—H6121.3 (15)H5A—C5—H5C109.5
C2—N4—H7119.6 (10)H5B—C5—H5C109.5
C2—N4—H8121.8 (11)C6—C5—H5D109.5
H7—N4—H8118.5 (15)H5A—C5—H5D141.1
N1—C1—N2120.36 (11)H5B—C5—H5D56.3
N1—C1—S1119.58 (9)H5C—C5—H5D56.3
N2—C1—S1120.03 (9)C6—C5—H5E109.5
N4—C2—N3118.69 (11)H5A—C5—H5E56.3
N4—C2—S2119.51 (9)H5B—C5—H5E141.1
N3—C2—S2121.79 (9)H5C—C5—H5E56.3
C4—C3—H3A109.5H5D—C5—H5E109.5
C4—C3—H3B109.5C6—C5—H5F109.5
H3A—C3—H3B109.5H5A—C5—H5F56.3
C4—C3—H3C109.5H5B—C5—H5F56.3
H3A—C3—H3C109.5H5C—C5—H5F141.1
H3B—C3—H3C109.5H5D—C5—H5F109.5
C4—C3—H3D109.5H5E—C5—H5F109.5
H3A—C3—H3D141.1O2—C6—O1122.82 (10)
H3B—C3—H3D56.3O2—C6—C5120.65 (10)
H3C—C3—H3D56.3O1—C6—C5116.53 (10)
Co1—S1—C1—N199.80 (9)Co1—O3—C4—O42.53 (15)
Co1—S1—C1—N282.07 (9)Co1—O3—C4—C3178.52 (8)
Co1—S2—C2—N4145.78 (9)Co1—O1—C6—O22.57 (14)
Co1—S2—C2—N334.62 (10)Co1—O1—C6—C5176.89 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.830 (18)1.959 (18)2.7717 (14)165.8 (16)
N1—H2···O2ii0.877 (16)1.959 (17)2.8324 (14)173.6 (14)
N2—H3···S1iii0.881 (19)2.859 (19)3.7200 (12)165.7 (15)
N2—H4···S2i0.825 (16)2.810 (16)3.5080 (11)143.5 (14)
N2—H4···O4i0.825 (16)2.613 (17)3.2479 (15)134.8 (14)
N3—H5···O1iv0.810 (16)2.482 (16)3.1759 (13)144.5 (14)
N3—H6···O20.810 (17)2.038 (17)2.8388 (14)169.6 (16)
N4—H7···O1iv0.848 (16)2.108 (17)2.8994 (14)155.3 (14)
N4—H8···O3v0.808 (17)2.176 (16)2.8452 (13)140.3 (14)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z.
Selected geometric parameters (Å, º) top
Co1—O31.9462 (8)Co1—S12.3291 (3)
Co1—O11.9847 (8)Co1—S22.3299 (3)
O3—Co1—O1101.57 (3)O3—Co1—S2117.69 (3)
O3—Co1—S1112.22 (3)O1—Co1—S2117.47 (3)
O1—Co1—S195.07 (2)S1—Co1—S2110.445 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.830 (18)1.959 (18)2.7717 (14)165.8 (16)
N1—H2···O2ii0.877 (16)1.959 (17)2.8324 (14)173.6 (14)
N2—H3···S1iii0.881 (19)2.859 (19)3.7200 (12)165.7 (15)
N2—H4···S2i0.825 (16)2.810 (16)3.5080 (11)143.5 (14)
N2—H4···O4i0.825 (16)2.613 (17)3.2479 (15)134.8 (14)
N3—H5···O1iv0.810 (16)2.482 (16)3.1759 (13)144.5 (14)
N3—H6···O20.810 (17)2.038 (17)2.8388 (14)169.6 (16)
N4—H7···O1iv0.848 (16)2.108 (17)2.8994 (14)155.3 (14)
N4—H8···O3v0.808 (17)2.176 (16)2.8452 (13)140.3 (14)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z.
Comparison of the coordination environment of the Co complex of the present study with the isotypic Zn complex from the literature (Cavalca et al., 1967). top
M=CoM=ZnΔ [Å]
M-S12.3291 (3)2.326 (2)0.003 (2)
M-S22.3299 (3)2.261 (4)0.069 (4)
M-O11.9847 (8)1.973 (6)0.012 (6)
M-O31.9462 (8)1.954 (8)-0.008 (8)

Acknowledgements

The X-ray diffractometer has been financed by the Netherlands Organization for Scientific Research (NWO).

References

First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavalca, L., Gasparri, G. F., Andreetti, D. & Domiano, P. (1967). Acta Cryst. 22, 90–98.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchreurs, A. M. M. (2013). Peakref. Utrecht University, The Netherlands.  Google Scholar
First citationSchreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J. Appl. Cryst. 43, 70–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds