organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-methyl-3-(3-methyl­phenyl­sulfin­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 February 2014; accepted 14 February 2014; online 19 February 2014)

In the title compound, C16H13BrO2S, the dihedral angle between the mean plane [r.m.s. deviation = 0.012 (1) Å] of the benzo­furan ring system and the 3-methyl­phenyl ring is 84.83 (4)°. In the crystal, mol­ecules are linked via pairs of Br⋯O [3.240 (1) Å] contacts, forming inversion dimers. These dimers are linked by C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2721.], 2012a[Choi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o1298.],b[Choi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o2491.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrO2S

  • Mr = 349.23

  • Triclinic, [P \overline 1]

  • a = 8.4209 (1) Å

  • b = 8.9042 (1) Å

  • c = 10.8628 (1) Å

  • α = 106.956 (1)°

  • β = 90.441 (1)°

  • γ = 108.900 (1)°

  • V = 732.38 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.95 mm−1

  • T = 173 K

  • 0.43 × 0.32 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.365, Tmax = 0.746

  • 13736 measured reflections

  • 3667 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.09

  • 3667 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C10–C15 (3-methyl­phen­yl) and C2–C7 (benzene), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9ACg1i 0.98 2.91 3.785 (2) 150
C12—H12⋯Cg2ii 0.95 2.79 3.674 (2) 154
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-bromo-2-methyl-1-benzofuran derivatives containing 4-chlorophenylsulfinyl (Choi et al., 2010), 4-methylphenylsulfinyl (Choi et al., 2012a) and 3-fluorophenylsulfinyl (Choi et al., 2012b) substituents in the 3-position, we report herein on the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzofuran unit is essentially planar, with a mean deviation of 0.012 (1) Å from the mean plane defined by the nine constituent atoms. It is inclined to the 3-methylphenyl ring by 84.83 (4)°.

In the crystal, Fig. 2, molecules are connected by pairs of Br···O halogen-bonds (Politzer et al., 2007), between the bromine atom and the O atom of the SO unit [Br1···O2iii = 3.240 (1) Å, C4—Br1···O2iii = 175.63 (5)°; symmetry code: (iii) - x, - y + 1, - z + 1] forming inversion dimers. These dimers are linked by C—H···π interactions into supramolecular chains running along the a-axis. In addition, there are C—H···π interactions resulting in inversion related dimers (Table 1 and Fig. 2).

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-bromo-2-methyl-3-(3-methylphenylsulfanyl)-1-benzofuran (300 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [Yield 78%, M.p. 413–414 K; Rf = 0.49 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model: C—H = 0.95 Å for aryl and 0.99 Å for methyl H atoms with Uiso(H) = 1.2Ueq(C-aryl) and = 1.5Ueq(C-methyl). The positions of the methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the C—H···π and Br···O interactions as dotted lines [see Table 1 for details; H atoms not involved in hydrogen-bonding have been omitted for clarity; symmetry codes : (i) - x + 1, - y + 1, - z + 2; (ii) x + 1, y, z; (iii) - x, - y + 1, - z + 1; (iv) x - 1, y, z].
5-Bromo-2-methyl-3-(3-methylphenylsulfinyl)-1-benzofuran top
Crystal data top
C16H13BrO2SZ = 2
Mr = 349.23F(000) = 352
Triclinic, P1Dx = 1.584 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4209 (1) ÅCell parameters from 8553 reflections
b = 8.9042 (1) Åθ = 2.5–28.4°
c = 10.8628 (1) ŵ = 2.95 mm1
α = 106.956 (1)°T = 173 K
β = 90.441 (1)°Block, colourless
γ = 108.900 (1)°0.43 × 0.32 × 0.09 mm
V = 732.38 (1) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3667 independent reflections
Radiation source: rotating anode3391 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.365, Tmax = 0.746l = 1414
13736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.066H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.2396P]
where P = (Fo2 + 2Fc2)/3
3667 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H13BrO2Sγ = 108.900 (1)°
Mr = 349.23V = 732.38 (1) Å3
Triclinic, P1Z = 2
a = 8.4209 (1) ÅMo Kα radiation
b = 8.9042 (1) ŵ = 2.95 mm1
c = 10.8628 (1) ÅT = 173 K
α = 106.956 (1)°0.43 × 0.32 × 0.09 mm
β = 90.441 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3667 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3391 reflections with I > 2σ(I)
Tmin = 0.365, Tmax = 0.746Rint = 0.034
13736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
3667 reflectionsΔρmin = 0.54 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04187 (2)0.75979 (2)0.479648 (15)0.03138 (7)
S10.24413 (5)0.49344 (5)0.90916 (4)0.02597 (9)
O10.23301 (15)0.94970 (14)1.04896 (11)0.0283 (2)
O20.08675 (15)0.36872 (15)0.82700 (13)0.0339 (3)
C10.23351 (19)0.69433 (19)0.93705 (15)0.0230 (3)
C20.18550 (18)0.76541 (18)0.84534 (14)0.0209 (3)
C30.14284 (19)0.71368 (19)0.71172 (15)0.0224 (3)
H30.14230.60810.65790.027*
C40.10115 (19)0.82404 (19)0.66114 (15)0.0235 (3)
C50.0980 (2)0.9788 (2)0.73792 (17)0.0271 (3)
H50.06611.04880.69890.033*
C60.1413 (2)1.03082 (19)0.87084 (17)0.0273 (3)
H60.14051.13580.92490.033*
C70.18532 (19)0.92194 (19)0.92009 (15)0.0234 (3)
C80.2602 (2)0.8082 (2)1.05582 (16)0.0266 (3)
C90.3152 (3)0.8114 (3)1.18646 (17)0.0384 (4)
H9A0.31610.70051.18330.058*
H9B0.23690.84241.24690.058*
H9C0.42910.89341.21590.058*
C100.40882 (18)0.50755 (19)0.80452 (15)0.0234 (3)
C110.5604 (2)0.6403 (2)0.84122 (18)0.0317 (3)
H110.57600.73000.91870.038*
C120.6883 (2)0.6386 (2)0.7623 (2)0.0384 (4)
H120.79320.72810.78590.046*
C130.6648 (2)0.5077 (2)0.64917 (19)0.0345 (4)
H130.75390.50900.59590.041*
C140.5133 (2)0.3745 (2)0.61235 (17)0.0289 (3)
C150.3854 (2)0.3760 (2)0.69235 (16)0.0266 (3)
H150.28100.28570.66970.032*
C160.4876 (3)0.2305 (3)0.4904 (2)0.0424 (4)
H16A0.52400.27370.41810.064*
H16B0.36780.16140.47140.064*
H16C0.55450.16290.50230.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03812 (10)0.03427 (10)0.02629 (9)0.01357 (7)0.00008 (6)0.01480 (7)
S10.02985 (19)0.02419 (19)0.0310 (2)0.01154 (15)0.00610 (15)0.01633 (16)
O10.0335 (6)0.0250 (6)0.0242 (6)0.0104 (5)0.0017 (4)0.0042 (5)
O20.0277 (6)0.0229 (6)0.0491 (8)0.0053 (5)0.0083 (5)0.0119 (5)
C10.0248 (7)0.0231 (7)0.0238 (7)0.0085 (6)0.0040 (5)0.0107 (6)
C20.0214 (6)0.0196 (7)0.0245 (7)0.0077 (5)0.0052 (5)0.0099 (6)
C30.0259 (7)0.0199 (7)0.0233 (7)0.0092 (5)0.0032 (5)0.0079 (6)
C40.0225 (7)0.0249 (7)0.0256 (7)0.0075 (6)0.0022 (5)0.0121 (6)
C50.0260 (7)0.0227 (7)0.0373 (9)0.0088 (6)0.0034 (6)0.0156 (7)
C60.0292 (8)0.0184 (7)0.0345 (8)0.0093 (6)0.0036 (6)0.0070 (6)
C70.0241 (7)0.0212 (7)0.0237 (7)0.0069 (5)0.0031 (5)0.0063 (6)
C80.0259 (7)0.0286 (8)0.0264 (8)0.0080 (6)0.0039 (6)0.0113 (6)
C90.0439 (10)0.0467 (11)0.0243 (8)0.0141 (8)0.0007 (7)0.0124 (8)
C100.0219 (7)0.0236 (7)0.0296 (8)0.0100 (6)0.0012 (6)0.0131 (6)
C110.0277 (8)0.0259 (8)0.0368 (9)0.0069 (6)0.0001 (7)0.0057 (7)
C120.0253 (8)0.0308 (9)0.0524 (12)0.0037 (7)0.0050 (7)0.0097 (8)
C130.0293 (8)0.0335 (9)0.0450 (10)0.0131 (7)0.0123 (7)0.0157 (8)
C140.0315 (8)0.0285 (8)0.0316 (8)0.0152 (6)0.0026 (6)0.0111 (7)
C150.0245 (7)0.0225 (7)0.0338 (8)0.0081 (6)0.0015 (6)0.0103 (6)
C160.0451 (10)0.0391 (10)0.0401 (10)0.0190 (8)0.0048 (8)0.0027 (8)
Geometric parameters (Å, º) top
Br1—C41.8988 (16)C8—C91.479 (2)
Br1—O2i3.2399 (14)C9—H9A0.9800
S1—O21.4954 (13)C9—H9B0.9800
S1—C11.7571 (16)C9—H9C0.9800
S1—C101.7960 (16)C10—C151.382 (2)
O1—C81.373 (2)C10—C111.387 (2)
O1—C71.3810 (19)C11—C121.382 (3)
C1—C81.352 (2)C11—H110.9500
C1—C21.444 (2)C12—C131.386 (3)
C2—C31.394 (2)C12—H120.9500
C2—C71.394 (2)C13—C141.389 (2)
C3—C41.388 (2)C13—H130.9500
C3—H30.9500C14—C151.390 (2)
C4—C51.396 (2)C14—C161.507 (3)
C5—C61.387 (2)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—C71.377 (2)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C4—Br1—O2i175.63 (5)C8—C9—H9B109.5
O2—S1—C1108.56 (7)H9A—C9—H9B109.5
O2—S1—C10106.16 (7)C8—C9—H9C109.5
C1—S1—C1098.49 (7)H9A—C9—H9C109.5
C8—O1—C7106.43 (12)H9B—C9—H9C109.5
C8—C1—C2107.45 (14)C15—C10—C11121.21 (15)
C8—C1—S1123.80 (12)C15—C10—S1118.01 (12)
C2—C1—S1128.62 (12)C11—C10—S1120.56 (13)
C3—C2—C7119.50 (13)C12—C11—C10118.38 (17)
C3—C2—C1135.70 (14)C12—C11—H11120.8
C7—C2—C1104.80 (13)C10—C11—H11120.8
C4—C3—C2116.72 (14)C11—C12—C13120.62 (16)
C4—C3—H3121.6C11—C12—H12119.7
C2—C3—H3121.6C13—C12—H12119.7
C3—C4—C5122.96 (15)C12—C13—C14121.11 (17)
C3—C4—Br1118.47 (12)C12—C13—H13119.4
C5—C4—Br1118.57 (11)C14—C13—H13119.4
C6—C5—C4120.40 (14)C13—C14—C15118.14 (16)
C6—C5—H5119.8C13—C14—C16121.43 (17)
C4—C5—H5119.8C15—C14—C16120.43 (16)
C7—C6—C5116.32 (14)C10—C15—C14120.54 (15)
C7—C6—H6121.8C10—C15—H15119.7
C5—C6—H6121.8C14—C15—H15119.7
C6—C7—O1125.57 (14)C14—C16—H16A109.5
C6—C7—C2124.08 (15)C14—C16—H16B109.5
O1—C7—C2110.35 (13)H16A—C16—H16B109.5
C1—C8—O1110.95 (14)C14—C16—H16C109.5
C1—C8—C9133.31 (16)H16A—C16—H16C109.5
O1—C8—C9115.71 (15)H16B—C16—H16C109.5
C8—C9—H9A109.5
O2—S1—C1—C8129.11 (14)C1—C2—C7—O11.19 (16)
C10—S1—C1—C8120.59 (14)C2—C1—C8—O10.05 (18)
O2—S1—C1—C246.22 (16)S1—C1—C8—O1176.13 (11)
C10—S1—C1—C264.09 (15)C2—C1—C8—C9178.18 (18)
C8—C1—C2—C3179.77 (17)S1—C1—C8—C95.6 (3)
S1—C1—C2—C34.3 (3)C7—O1—C8—C10.68 (17)
C8—C1—C2—C70.75 (17)C7—O1—C8—C9179.25 (14)
S1—C1—C2—C7175.18 (12)O2—S1—C10—C1521.27 (13)
C7—C2—C3—C40.4 (2)C1—S1—C10—C15133.50 (12)
C1—C2—C3—C4179.07 (16)O2—S1—C10—C11164.08 (13)
C2—C3—C4—C51.1 (2)C1—S1—C10—C1151.85 (14)
C2—C3—C4—Br1179.96 (11)C15—C10—C11—C120.3 (3)
C3—C4—C5—C61.5 (2)S1—C10—C11—C12174.82 (14)
Br1—C4—C5—C6179.67 (12)C10—C11—C12—C130.2 (3)
C4—C5—C6—C70.3 (2)C11—C12—C13—C140.4 (3)
C5—C6—C7—O1179.71 (14)C12—C13—C14—C150.1 (3)
C5—C6—C7—C21.2 (2)C12—C13—C14—C16179.16 (18)
C8—O1—C7—C6178.02 (15)C11—C10—C15—C140.8 (2)
C8—O1—C7—C21.18 (17)S1—C10—C15—C14175.41 (12)
C3—C2—C7—C61.6 (2)C13—C14—C15—C100.6 (2)
C1—C2—C7—C6178.02 (15)C16—C14—C15—C10179.75 (15)
C3—C2—C7—O1179.22 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C10–C15 (3-methylphenyl) and C2–C7 (benzene), respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1ii0.982.913.785 (2)150
C12—H12···Cg2iii0.952.793.674 (2)154
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C10–C15 (3-methylphenyl) and C2–C7 (benzene), respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.982.913.785 (2)150
C12—H12···Cg2ii0.952.793.674 (2)154
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012a). Acta Cryst. E68, o1298.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012b). Acta Cryst. E68, o2491.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds