organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Carboxyl­atopyridinium–4-nitro­phenol (1/1)

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, srkanagadurai@yahoo.co.in

(Received 11 March 2014; accepted 12 March 2014; online 15 March 2014)

In the title 1:1 adduct, C6H5NO3·C6H5NO2, both mol­ecules are almost planar (r.m.s. deviations for the non-H atoms = 0.027 and 0.023 Å for 4-nitro­phenol and 2-carboxyl­atopyridinium, respectively). The pyridine mol­ecule crystallizes as a zwitterion (nominal proton transfer from the carb­oxy­lic acid group to the N atom in the ring). In the crystal, inversion dimers of the zwitterions linked by pairs of N—H⋯O hydrogen bonds generate R22(10) loops; two 4-nitro­phenol mol­ecules link to the dimer by O—H⋯O hydrogen bonds, generating a four-molecule aggregate. These are linked by C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For a related structure, see: Pandi et al. (2012[Pandi, P., Peramaiyan, G., Akilan, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3081.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5NO3·C6H5NO2

  • Mr = 262.22

  • Triclinic, [P \overline 1]

  • a = 6.1743 (4) Å

  • b = 7.0512 (3) Å

  • c = 14.2222 (8) Å

  • α = 101.727 (3)°

  • β = 92.191 (2)°

  • γ = 104.758 (4)°

  • V = 583.60 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.977

  • 13952 measured reflections

  • 3486 independent reflections

  • 2327 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.04

  • 3486 reflections

  • 180 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.84 (1) 1.77 (1) 2.5929 (15) 165 (2)
N2—H2⋯O4ii 0.87 (1) 1.88 (1) 2.6693 (15) 151 (2)
C5—H5⋯O3iii 0.93 2.56 3.3570 (17) 143
C9—H9⋯O2iv 0.93 2.57 3.2009 (18) 126
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We herin report the crystal structure of (I), (Fig. 1). The bond lengths are comparable with those in a similar structure (Pandi et al., 2012).

The pyridine ring is almost planar, with the maximum deviation of 0.005 (2) Å. The carboxy group is twisted at an angle of 2.9 (1)° with the pyridine ring. The nitro group is oriented at an angle of 1.8 (1)° with the benzene ring. The crystal structure features O—H···O, N—H···O and C—H···O (Fig. 2 & Table 1) interactions to form a three dimensional network.

Related literature top

For a related structure, see: Pandi et al. (2012).

Experimental top

The title material was synthesized by taking 2-carboxypyridine (1.2331 g) and p-nitrophenol (1.3911 g) in an equimolar ratio. 2-carboxypyridine was added gradually in the saturated solution of p-nitrophenol using methanol with continuous stirring for one hour and white precipitate was obtained. Then, the precipitate was dissolved using the same solvent. The prepared solution was allowed for slow evaporation at room temperature to yield colourless blocks after 10 days.

Refinement top

H atoms for Caromatic were positioned geometrically and refined using riding model, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to N and O atoms were fixed from the fourier map and refined freely with the distance restraints: 0.82 (1)Å for O—H and 0.86 (1)Å for N—H.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down a axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Carboxylatopyridinium–4-nitrophenol (1/1) top
Crystal data top
C6H5NO3·C6H5NO2Z = 2
Mr = 262.22F(000) = 272
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1743 (4) ÅCell parameters from 4728 reflections
b = 7.0512 (3) Åθ = 2.9–27.7°
c = 14.2222 (8) ŵ = 0.12 mm1
α = 101.727 (3)°T = 295 K
β = 92.191 (2)°Block, colourless
γ = 104.758 (4)°0.32 × 0.24 × 0.20 mm
V = 583.60 (6) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube2327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 30.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.963, Tmax = 0.977k = 109
13952 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.0686P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.14 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H5NO3·C6H5NO2γ = 104.758 (4)°
Mr = 262.22V = 583.60 (6) Å3
Triclinic, P1Z = 2
a = 6.1743 (4) ÅMo Kα radiation
b = 7.0512 (3) ŵ = 0.12 mm1
c = 14.2222 (8) ÅT = 295 K
α = 101.727 (3)°0.32 × 0.24 × 0.20 mm
β = 92.191 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2327 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.977Rint = 0.028
13952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.14 e Å3
3486 reflectionsΔρmin = 0.24 e Å3
180 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3865 (2)0.38442 (18)0.19001 (9)0.0451 (3)
C20.2381 (2)0.2646 (2)0.11160 (10)0.0498 (3)
H2A0.08530.22300.11870.060*
C30.3152 (2)0.20783 (19)0.02422 (9)0.0474 (3)
H30.21550.12880.02810.057*
C40.5424 (2)0.26918 (17)0.01464 (9)0.0414 (3)
C50.6929 (2)0.38640 (18)0.09160 (9)0.0459 (3)
H50.84550.42740.08400.055*
C60.6153 (2)0.44171 (18)0.17923 (9)0.0474 (3)
H60.71610.51790.23170.057*
C70.1820 (2)0.19479 (19)0.45093 (8)0.0429 (3)
C80.1051 (2)0.1161 (2)0.32506 (10)0.0512 (3)
H80.22840.14620.29810.061*
C90.0352 (3)0.0443 (2)0.27958 (10)0.0550 (3)
H90.10900.12360.22110.066*
C100.1445 (3)0.0868 (2)0.32101 (10)0.0589 (4)
H100.19300.19680.29120.071*
C110.2543 (3)0.0336 (2)0.40725 (9)0.0529 (3)
H110.37720.00510.43560.063*
C120.2879 (2)0.3378 (2)0.54544 (9)0.0477 (3)
N10.6252 (2)0.21159 (16)0.07787 (8)0.0501 (3)
N20.00405 (19)0.22997 (16)0.40848 (7)0.0452 (3)
O10.29906 (19)0.44091 (17)0.27221 (8)0.0619 (3)
O20.4895 (2)0.11237 (18)0.14600 (7)0.0689 (3)
O30.82814 (19)0.26305 (17)0.08431 (8)0.0714 (3)
O40.2047 (2)0.47818 (17)0.57395 (7)0.0701 (3)
O50.44519 (18)0.29715 (16)0.58610 (7)0.0666 (3)
H20.039 (3)0.3351 (18)0.4342 (11)0.066 (5)*
H10.400 (3)0.524 (2)0.3119 (12)0.085 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0519 (7)0.0382 (6)0.0449 (6)0.0139 (5)0.0003 (5)0.0071 (5)
C20.0394 (6)0.0514 (7)0.0550 (7)0.0101 (5)0.0036 (5)0.0075 (6)
C30.0460 (7)0.0433 (6)0.0476 (7)0.0104 (5)0.0116 (5)0.0030 (5)
C40.0478 (7)0.0346 (6)0.0427 (6)0.0150 (5)0.0034 (5)0.0066 (5)
C50.0404 (6)0.0410 (6)0.0525 (7)0.0091 (5)0.0041 (5)0.0054 (5)
C60.0476 (7)0.0409 (6)0.0469 (6)0.0078 (5)0.0091 (5)0.0019 (5)
C70.0500 (7)0.0472 (7)0.0334 (5)0.0184 (5)0.0041 (5)0.0067 (5)
C80.0550 (8)0.0496 (7)0.0459 (7)0.0160 (6)0.0074 (6)0.0034 (5)
C90.0678 (9)0.0471 (7)0.0443 (7)0.0161 (6)0.0051 (6)0.0021 (5)
C100.0792 (10)0.0547 (8)0.0458 (7)0.0334 (7)0.0042 (7)0.0016 (6)
C110.0617 (8)0.0616 (8)0.0412 (6)0.0335 (7)0.0005 (6)0.0039 (6)
C120.0572 (8)0.0530 (7)0.0350 (5)0.0238 (6)0.0008 (5)0.0034 (5)
N10.0602 (7)0.0435 (6)0.0477 (6)0.0192 (5)0.0009 (5)0.0071 (5)
N20.0544 (6)0.0435 (6)0.0386 (5)0.0206 (5)0.0001 (4)0.0024 (4)
O10.0611 (7)0.0658 (7)0.0513 (6)0.0141 (5)0.0066 (5)0.0004 (5)
O20.0762 (7)0.0787 (7)0.0460 (6)0.0263 (6)0.0106 (5)0.0033 (5)
O30.0627 (7)0.0734 (7)0.0691 (7)0.0119 (6)0.0161 (5)0.0013 (6)
O40.0938 (8)0.0667 (7)0.0520 (6)0.0483 (6)0.0173 (5)0.0117 (5)
O50.0763 (7)0.0785 (7)0.0471 (5)0.0448 (6)0.0138 (5)0.0082 (5)
Geometric parameters (Å, º) top
C1—O11.3363 (16)C8—N21.3349 (16)
C1—C61.3902 (19)C8—C91.3626 (19)
C1—C21.3934 (18)C8—H80.9300
C2—C31.3679 (19)C9—C101.364 (2)
C2—H2A0.9300C9—H90.9300
C3—C41.3796 (18)C10—C111.3801 (19)
C3—H30.9300C10—H100.9300
C4—C51.3813 (17)C11—H110.9300
C4—N11.4482 (17)C12—O41.2325 (16)
C5—C61.3705 (19)C12—O51.2356 (15)
C5—H50.9300N1—O21.2222 (15)
C6—H60.9300N1—O31.2252 (15)
C7—N21.3352 (16)N2—H20.866 (9)
C7—C111.3676 (18)O1—H10.838 (9)
C7—C121.5156 (17)
O1—C1—C6123.25 (12)N2—C8—H8120.1
O1—C1—C2117.49 (12)C9—C8—H8120.1
C6—C1—C2119.25 (12)C8—C9—C10119.09 (13)
C3—C2—C1120.57 (12)C8—C9—H9120.5
C3—C2—H2A119.7C10—C9—H9120.5
C1—C2—H2A119.7C9—C10—C11119.88 (13)
C2—C3—C4119.23 (12)C9—C10—H10120.1
C2—C3—H3120.4C11—C10—H10120.1
C4—C3—H3120.4C7—C11—C10119.84 (13)
C3—C4—C5121.20 (12)C7—C11—H11120.1
C3—C4—N1119.62 (11)C10—C11—H11120.1
C5—C4—N1119.18 (12)O4—C12—O5127.49 (12)
C6—C5—C4119.40 (12)O4—C12—C7116.64 (11)
C6—C5—H5120.3O5—C12—C7115.84 (11)
C4—C5—H5120.3O2—N1—O3122.83 (12)
C5—C6—C1120.31 (12)O2—N1—C4118.51 (12)
C5—C6—H6119.8O3—N1—C4118.65 (11)
C1—C6—H6119.8C8—N2—C7123.02 (11)
N2—C7—C11118.38 (11)C8—N2—H2117.9 (11)
N2—C7—C12116.75 (11)C7—N2—H2119.0 (11)
C11—C7—C12124.87 (12)C1—O1—H1109.5 (14)
N2—C8—C9119.78 (13)
O1—C1—C2—C3177.46 (13)C12—C7—C11—C10179.96 (13)
C6—C1—C2—C31.60 (19)C9—C10—C11—C70.2 (2)
C1—C2—C3—C40.5 (2)N2—C7—C12—O41.96 (19)
C2—C3—C4—C50.09 (19)C11—C7—C12—O4178.60 (14)
C2—C3—C4—N1179.33 (11)N2—C7—C12—O5176.51 (12)
C3—C4—C5—C60.42 (19)C11—C7—C12—O52.9 (2)
N1—C4—C5—C6179.84 (11)C3—C4—N1—O21.36 (18)
C4—C5—C6—C11.53 (19)C5—C4—N1—O2178.07 (11)
O1—C1—C6—C5176.89 (12)C3—C4—N1—O3178.10 (12)
C2—C1—C6—C52.11 (19)C5—C4—N1—O32.47 (18)
N2—C8—C9—C100.7 (2)C9—C8—N2—C70.0 (2)
C8—C9—C10—C110.8 (2)C11—C7—N2—C80.6 (2)
N2—C7—C11—C100.5 (2)C12—C7—N2—C8179.91 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.84 (1)1.77 (1)2.5929 (15)165 (2)
N2—H2···O4ii0.87 (1)1.88 (1)2.6693 (15)151 (2)
C5—H5···O3iii0.932.563.3570 (17)143
C9—H9···O2iv0.932.573.2009 (18)126
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+1, z; (iv) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.838 (9)1.773 (11)2.5929 (15)165 (2)
N2—H2···O4ii0.866 (9)1.880 (12)2.6693 (15)151 (2)
C5—H5···O3iii0.932.563.3570 (17)143
C9—H9···O2iv0.932.573.2009 (18)126
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+2, y+1, z; (iv) x, y, z.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPandi, P., Peramaiyan, G., Akilan, R., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3081.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds