organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hy­dr­oxy­isoquinolin-2-ium hydrogen succinate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, srkanagadurai@yahoo.co.in

(Received 18 March 2014; accepted 24 March 2014; online 29 March 2014)

In the title salt, C9H8NO+·C4H5O4, the isoquinolinium ring system is approximately planar [r.m.s deviation = 0.011 (2) Å]. In the crystal, adjacent cations and anions are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming columns along the b axis. The columns are connected by weak C—H⋯O inter­actions into a three-dimensional network.

Related literature

For the biological activity of quinoline derivatives, see: Hopkins et al. (2005[Hopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358-373.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related quinoline structure, see: Loh et al. (2010[Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2709.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8NO+·C4H5O4

  • Mr = 263.24

  • Monoclinic, P 21

  • a = 9.553 (5) Å

  • b = 4.962 (3) Å

  • c = 12.706 (5) Å

  • β = 104.117 (5)°

  • V = 584.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.982

  • 8297 measured reflections

  • 3688 independent reflections

  • 3289 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.169

  • S = 1.10

  • 3688 reflections

  • 181 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.92 (1) 2.48 (2) 3.255 (3) 142 (3)
O1—H1A⋯O4ii 0.81 (1) 1.91 (1) 2.705 (2) 170 (3)
O2—H2A⋯O5iii 0.83 (1) 1.77 (1) 2.591 (2) 169 (3)
C4—H4⋯O3iv 0.93 2.50 3.360 (3) 154
C8—H8⋯O5v 0.93 2.34 3.078 (3) 137
C9—H9⋯O4v 0.93 1.81 2.718 (2) 165
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z]; (ii) [-x, y+{\script{1\over 2}}, -z]; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) x+1, y-1, z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Quinolinium derivatives are known to exhibit interesting bioactivities and pharmacological activities (Hopkins et al., 2005; Musiol et al., 2006). We herewith report the crystal structure of the title compound (Fig. 1). The bond lengths of the anion are within normal range (Allen et al., 1987) and the bond lengths of cation are comparable with the reported similar structure (Loh et al., 2010).

In the cation, the isoquinolinium ring system is planar [r.m.s deviation = 0.011 (2) Å]. The adjacent cations and anions are linked by weak intermolecular O—H···O and N—H···O interactions (Table 1 and Fig. 2 ) to form a column along the b axis. Weak ππ [Cg1···Cg1 (1-x, 1/2+y, -z) distance = 4.994 (3) Å, Cg1···Cg2 (x, -1+y, z) distance = 4.673 (3) Å; Cg1 and Cg2 are the centroids of the rings (N1/C1–C5) and (C1/C5–C9), respectively] and C—H···O interactions are also observed in the crystal structure.

Related literature top

For the biological activity of quinoline derivatives, see: Hopkins et al. (2005); Musiol et al. (2006). For bond-length data, see: Allen et al. (1987). For a related quinoline structure, see: Loh et al. (2010).

Experimental top

1-Hydroxyisoquinolin-2-ium succinate was synthesized using the raw materials 1-hydroxyisoquinoline (1.45 g) and succinic acid (1.18 g) in an equimolar ratio. These reactants were dissolved in 10 ml of ethanol solvent and yellow precipitate was obtained after some time. The precipitate was dissolved in the same solvent and it is kept at room temperature for crystallization. After a span of four days, rod like crystals for diffraction study were harvested.

Refinement top

H atoms for CaromaticH and CH2 were positioned geometrically and refined using riding model, with C—H = 0.93 and 0.97 Å, respectively, and with Uiso(H) = 1.2Ueq(C). H atoms bounded to N and O atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(N, O) and distance restraints of O—H = 0.82 (1) Å and N—H = 0.86 (1) Å. One reflection (0 0 1) was omited during refinement as it was showing poor agreement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title cpompound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
1-Hydroxyisoquinolin-2-ium 3-carboxypropionate top
Crystal data top
C9H8NO+·C4H5O4F(000) = 276
Mr = 263.24Dx = 1.497 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4664 reflections
a = 9.553 (5) Åθ = 2.2–32.6°
b = 4.962 (3) ŵ = 0.12 mm1
c = 12.706 (5) ÅT = 295 K
β = 104.117 (5)°Block, colourless
V = 584.1 (5) Å30.22 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 33.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.975, Tmax = 0.982k = 67
8297 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1138P)2 + 0.0584P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.57 e Å3
4 restraintsΔρmin = 0.55 e Å3
Crystal data top
C9H8NO+·C4H5O4V = 584.1 (5) Å3
Mr = 263.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.553 (5) ŵ = 0.12 mm1
b = 4.962 (3) ÅT = 295 K
c = 12.706 (5) Å0.22 × 0.18 × 0.16 mm
β = 104.117 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3289 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.028
8297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0534 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.57 e Å3
3688 reflectionsΔρmin = 0.55 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28708 (17)1.0029 (4)0.15427 (13)0.0248 (3)
C20.21024 (18)1.0069 (4)0.04383 (12)0.0268 (3)
C30.3651 (2)0.6470 (5)0.01057 (17)0.0378 (4)
H30.39010.52880.03870.045*
C40.4391 (2)0.6380 (4)0.11717 (17)0.0345 (4)
H40.51350.51460.14040.041*
C50.40134 (18)0.8183 (4)0.19153 (14)0.0273 (3)
C60.4726 (2)0.8221 (5)0.30338 (15)0.0352 (4)
H60.54920.70520.33000.042*
C70.4292 (2)0.9972 (5)0.37231 (14)0.0381 (4)
H70.47490.99780.44590.046*
C80.3161 (2)1.1745 (5)0.33147 (14)0.0342 (4)
H80.28701.29420.37830.041*
C90.24902 (16)1.1760 (3)0.22686 (11)0.0219 (3)
H90.17421.29770.20210.026*
C100.2126 (2)1.2254 (4)0.36224 (13)0.0294 (4)
C110.1045 (2)0.9998 (5)0.37431 (13)0.0337 (4)
H11A0.13560.85290.41360.040*
H11B0.01221.06330.41740.040*
C120.0841 (2)0.8927 (4)0.26675 (13)0.0303 (3)
H12A0.17600.82510.22460.036*
H12B0.05591.04100.22660.036*
C130.02711 (18)0.6711 (4)0.27745 (12)0.0258 (3)
N10.2522 (2)0.8310 (5)0.02600 (14)0.0423 (4)
H10.214 (3)0.848 (9)0.0992 (9)0.063*
O10.10057 (16)1.1826 (3)0.01569 (11)0.0364 (3)
H1A0.067 (3)1.149 (7)0.0474 (11)0.055*
O20.23278 (17)1.3291 (4)0.45355 (11)0.0410 (4)
H2A0.198 (3)1.257 (7)0.5134 (15)0.061*
O30.27879 (19)1.3135 (5)0.27647 (12)0.0492 (5)
O40.04477 (15)0.5692 (3)0.19024 (9)0.0332 (3)
O50.09610 (18)0.5944 (4)0.36893 (10)0.0425 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (7)0.0250 (7)0.0242 (6)0.0023 (6)0.0042 (5)0.0003 (6)
C20.0285 (8)0.0263 (8)0.0234 (6)0.0023 (7)0.0023 (5)0.0009 (6)
C30.0405 (10)0.0367 (10)0.0375 (9)0.0019 (8)0.0118 (7)0.0097 (8)
C40.0335 (8)0.0329 (10)0.0371 (9)0.0060 (7)0.0088 (7)0.0011 (7)
C50.0259 (7)0.0275 (8)0.0284 (6)0.0007 (7)0.0064 (6)0.0019 (6)
C60.0308 (8)0.0414 (11)0.0305 (7)0.0065 (8)0.0015 (6)0.0067 (7)
C70.0390 (10)0.0474 (12)0.0246 (7)0.0031 (9)0.0010 (6)0.0000 (8)
C80.0363 (9)0.0406 (10)0.0244 (7)0.0025 (8)0.0048 (6)0.0041 (7)
C90.0215 (6)0.0236 (7)0.0190 (5)0.0008 (6)0.0022 (5)0.0010 (5)
C100.0318 (8)0.0310 (9)0.0251 (6)0.0048 (7)0.0065 (6)0.0020 (6)
C110.0425 (10)0.0346 (9)0.0219 (6)0.0133 (8)0.0038 (6)0.0019 (6)
C120.0359 (9)0.0322 (9)0.0215 (6)0.0067 (7)0.0047 (6)0.0013 (6)
C130.0290 (7)0.0249 (8)0.0220 (6)0.0003 (6)0.0036 (5)0.0006 (5)
N10.0468 (10)0.0450 (11)0.0331 (7)0.0002 (9)0.0058 (7)0.0062 (8)
O10.0384 (7)0.0378 (8)0.0273 (6)0.0087 (6)0.0031 (5)0.0047 (5)
O20.0439 (8)0.0501 (9)0.0283 (6)0.0138 (7)0.0077 (5)0.0033 (6)
O30.0540 (9)0.0608 (12)0.0310 (6)0.0270 (9)0.0069 (6)0.0116 (7)
O40.0389 (7)0.0384 (8)0.0205 (5)0.0064 (6)0.0036 (4)0.0035 (5)
O50.0549 (9)0.0469 (9)0.0213 (5)0.0213 (8)0.0010 (5)0.0017 (5)
Geometric parameters (Å, º) top
C1—C91.373 (2)C8—H80.9300
C1—C51.415 (2)C9—H90.9300
C1—C21.416 (2)C10—O31.201 (2)
C2—O11.343 (2)C10—O21.325 (2)
C2—N11.372 (2)C10—C111.506 (3)
C3—C41.367 (3)C11—C121.522 (2)
C3—N11.403 (3)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.410 (3)C12—C131.512 (3)
C4—H40.9300C12—H12A0.9700
C5—C61.418 (2)C12—H12B0.9700
C6—C71.368 (3)C13—O51.248 (2)
C6—H60.9300C13—O41.266 (2)
C7—C81.392 (3)N1—H10.917 (10)
C7—H70.9300O1—H1A0.806 (10)
C8—C91.327 (2)O2—H2A0.833 (10)
C9—C1—C5119.31 (14)C8—C9—H9119.1
C9—C1—C2119.92 (15)C1—C9—H9119.1
C5—C1—C2120.77 (15)O3—C10—O2119.75 (18)
O1—C2—N1124.95 (15)O3—C10—C11124.01 (17)
O1—C2—C1117.06 (15)O2—C10—C11116.24 (15)
N1—C2—C1117.98 (16)C10—C11—C12113.75 (14)
C4—C3—N1121.27 (18)C10—C11—H11A108.8
C4—C3—H3119.4C12—C11—H11A108.8
N1—C3—H3119.4C10—C11—H11B108.8
C3—C4—C5119.22 (18)C12—C11—H11B108.8
C3—C4—H4120.4H11A—C11—H11B107.7
C5—C4—H4120.4C13—C12—C11114.45 (14)
C4—C5—C1119.27 (16)C13—C12—H12A108.6
C4—C5—C6122.75 (18)C11—C12—H12A108.6
C1—C5—C6117.98 (16)C13—C12—H12B108.6
C7—C6—C5120.24 (18)C11—C12—H12B108.6
C7—C6—H6119.9H12A—C12—H12B107.6
C5—C6—H6119.9O5—C13—O4122.73 (17)
C6—C7—C8119.46 (16)O5—C13—C12120.36 (14)
C6—C7—H7120.3O4—C13—C12116.91 (14)
C8—C7—H7120.3C2—N1—C3121.47 (16)
C9—C8—C7121.22 (18)C2—N1—H1119 (3)
C9—C8—H8119.4C3—N1—H1119 (2)
C7—C8—H8119.4C2—O1—H1A103 (2)
C8—C9—C1121.79 (17)C10—O2—H2A122 (2)
C9—C1—C2—O10.7 (2)C5—C6—C7—C81.0 (3)
C5—C1—C2—O1178.07 (16)C6—C7—C8—C90.3 (3)
C9—C1—C2—N1179.79 (17)C7—C8—C9—C10.3 (3)
C5—C1—C2—N11.5 (3)C5—C1—C9—C80.3 (3)
N1—C3—C4—C50.2 (3)C2—C1—C9—C8178.46 (18)
C3—C4—C5—C10.4 (3)O3—C10—C11—C120.7 (3)
C3—C4—C5—C6179.99 (19)O2—C10—C11—C12178.94 (18)
C9—C1—C5—C4179.17 (17)C10—C11—C12—C13178.42 (17)
C2—C1—C5—C40.4 (3)C11—C12—C13—O51.7 (3)
C9—C1—C5—C60.4 (2)C11—C12—C13—O4177.79 (17)
C2—C1—C5—C6179.14 (17)O1—C2—N1—C3177.81 (19)
C4—C5—C6—C7178.5 (2)C1—C2—N1—C31.7 (3)
C1—C5—C6—C71.1 (3)C4—C3—N1—C20.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.92 (1)2.48 (2)3.255 (3)142 (3)
O1—H1A···O4ii0.81 (1)1.91 (1)2.705 (2)170 (3)
O2—H2A···O5iii0.83 (1)1.77 (1)2.591 (2)169 (3)
C4—H4···O3iv0.932.503.360 (3)154
C8—H8···O5v0.932.343.078 (3)137
C9—H9···O4v0.931.812.718 (2)165
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1/2, z; (iii) x, y+1/2, z+1; (iv) x+1, y1, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.917 (10)2.48 (2)3.255 (3)142 (3)
O1—H1A···O4ii0.806 (10)1.908 (11)2.705 (2)170 (3)
O2—H2A···O5iii0.833 (10)1.768 (12)2.591 (2)169 (3)
C4—H4···O3iv0.932.503.360 (3)154
C8—H8···O5v0.932.343.078 (3)137
C9—H9···O4v0.931.812.718 (2)165
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1/2, z; (iii) x, y+1/2, z+1; (iv) x+1, y1, z; (v) x, y+1, z.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358–373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoh, W.-S., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds