organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­eth­yl)morpholine-4-carbox­amide

aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, and bDepartment of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand
*Correspondence e-mail: oguejiofo.ujam@unn.edu.ng

(Received 21 December 2013; accepted 16 March 2014; online 22 March 2014)

The title compound, C7H13ClN2O2, synthesized by the reaction of 2-chloro­ethyl iso­cyanate and morpholine, crystallizes with four molecules in the asymmetric unit, which have similar conformations and comprise two pairs each related by approximate non-crystallographic inversion centres. Two of them have a modest orientational disorder of the 2-chloro­ethyl fragments [occupancy ratio of 0.778 (4):0.222 (4)]. In the crystal, mol­ecules are linked by N—H⋯O=C hydrogen bonds, forming three crystallographically different kinds of infinite hydrogen-bonded chains extending along [001].

Related literature

For the solution-phase preparation of substituted morpholine derivatives, see: Lainton et al. (2003[Lainton, J. A., Allen, M. C., Burton, M., Cameron, S., Edwards, T. R., Harden, G., Hogg, R., Leung, W., Miller, S., Morrish, J. J., Rooke, S. M. & Wendt, B. (2003). J. Comb. Chem. 5, 400-407.]). For a related thio­morpholine analogue, see: Ujam et al. (2010[Ujam, O. T., Devoy, S. M., Henderson, W., Nicholson, B. K. & Andy Hor, T. S. (2010). Inorg. Chim. Acta, 363, 3558-3568.]); Henderson et al. (2006[Henderson, W., Chong, S. H. & Andy Hor, T. S. (2006). Inorg. Chim. Acta, 359, 3440-3450.]).

[Scheme 1]

Experimental

Crystal data
  • C7H13ClN2O2

  • Mr = 192.64

  • Monoclinic, C c

  • a = 10.7393 (8) Å

  • b = 33.613 (3) Å

  • c = 9.9942 (7) Å

  • β = 95.704 (5)°

  • V = 3589.9 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 99 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.892, Tmax = 0.962

  • 39446 measured reflections

  • 8451 independent reflections

  • 5276 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.158

  • S = 1.04

  • 8451 reflections

  • 307 parameters

  • 164 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4226 Friedel pairs

  • Absolute structure parameter: 0.38 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O6 0.85 2.03 2.831 (6) 157
N4—H4C⋯O4i 0.86 2.00 2.826 (6) 162
N6—H6C⋯O2ii 0.85 2.00 2.819 (6) 161
N8—H8C⋯O8iii 0.82 2.05 2.809 (6) 153
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound, N-(2-chloro­ethyl) morpholine-4-carboxamide, was prepared as part of an ongoing project investigating the multifunctional alkyl­ation of [Pt2(µ-S)2(PPh3)4] (Ujam et al., 2010). The X-ray structure determination established the molecular structure and atom connectivity of the title compound C7H13Cl1N2O2 (Fig. 1). There are four independent molecules in the asymmetric unit which have the same overall conformation and comprise two pairs each related by approximate non-crystallographic inversion centres. Two of them have a modest orientation disorder of the 2-chloro­ethyl fragments. The molecules consist of a chair-shaped morpholine ring attached to a planar urea-type N2CO unit. The 2-chloro­ethyl side chains are oriented approximately perpendicular to the N2CO unit. In the crystal structure the molecules are linked by N—H···OC hydrogen bonds (N···O = 2.809 (6) – 2.831 (6) Å) to form three crystallographically different kinds of infinite hydrogen bonded chains extending along [001] (Fig. 2), all with criss-cross patterns of molecule orientations when viewed along the chains (Fig. 3).

Experimental top

Morpholine [HN(CH2CH2)2O, 200 mg, 0.002 mmol] was added to a solution of 2-chloro­ethyl iso­cyanate [ClCH2CH2NCO, 200 mg, 0.002 mmol] in di­ethyl ether (30 mL), immediately producing a white precipitate of the product. After stirring for 5 min the product was filtered and washed with ether (20 mL) and dried under vacuum to give ClCH2CH2NHC(O)N(CH2CH2)2O. Crystals suitable for X-ray crystallographic analysis were obtained by vapour diffusion of di­ethyl ether into a di­chloro­methane solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in the crystallographic data Table. Diffraction images of the reciprocal space calculated from the recorded frame data were consistent with the crystallography reported and did reveal neither commensurate nor incommensurate superstructure reflections. All attempts to solve the structure in space group C2/c were unsuccessful, but it solved readily in Cc. The compound has four independent molecules in the asymmetric unit, comprising two pairs each related by an apparent inversion centre at x,y,z = 0.43, 0.63, 0.81 for the molecules 1 (Cl1, O1, O2, N1, N2, C1 through C7) and 2 (Cl2, N3, N4, O3, O4, C8 through C14), and at x,y,z = 0.42, 0.88, 0.31 for molecules molecules 3 (Cl3, O5, O6, N5, N6, C15 through C21) and 4 (Cl4, N7, N8, O7, O8, C22 through C28) . The two inversion centres were approximately related by 0 0.25 0.5 which is not a crystallographic relationship in C2/c, so the structure could not be converted to the centrosymmetric cell. Refinement was completed in the non-centrosymmetric space group Cc, and the crystal treated as a racemic twin. Unrestrained refinement led to a large spread in values for chemically equivalent bond parameters, and some unrealistic thermal ellipsoids, no doubt arising from instability associated with the pseudosymmetry. Hence the final refinement restrained the independent molecules to similar geometry using the SAME command of SHELXL, and EADP constraints were applied to equivalent atoms related by pseudosymmetry. Some residual electron density appeared to arise from partial disorder of the ethyl­ene groups of two of the molecules (molecules 2 and 4) over two sites (0.78:0.22), so the C atoms of the minor component were included with fixed isotropic thermal parameters. Otherwise all non-hydrogen atoms were treated anisotropically. H atoms attached to carbon atoms were included in calculated positions [Uiso(H) = 1.2×Uequ(C)], but those attached to the amide N atoms were refined with DFIX constraints and Uiso(H) = 0.03 fixed.

Related literature top

For the solution-phase preparation of substituted morpholine derivatives, see: Lainton et al. (2003). For a related thiomorpholine analogue, see: Ujam et al. (2010); Henderson et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering of one of the four independent molecules of the title compound with displacement parameters drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. Crystal structure of the compound showing the four different intermolecular N—H···OC hydrogen bonds (dotted lines) within the three different hydrogen bond chains along [001]. C-bonded H atoms omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed along [001], the hydrogen bond chain direction. Symmetry equivalent molecules are colour coded and only Cl atoms were labeled. H atoms omitted for clarity.
N-(2-Chloroethyl)morpholine-4-carboxamide top
Crystal data top
C7H13ClN2O2F(000) = 1632
Mr = 192.64Dx = 1.426 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 10.7393 (8) ÅCell parameters from 3770 reflections
b = 33.613 (3) Åθ = 2–27°
c = 9.9942 (7) ŵ = 0.39 mm1
β = 95.704 (5)°T = 99 K
V = 3589.9 (5) Å3Needle, colourless
Z = 160.30 × 0.10 × 0.10 mm
Data collection top
Siemens SMART CCD
diffractometer
5276 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
ω scansθmax = 27.8°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick 2003)
h = 1414
Tmin = 0.892, Tmax = 0.962k = 4344
39446 measured reflectionsl = 1313
8451 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0582P)2 + 2.927P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8451 reflectionsΔρmax = 0.56 e Å3
307 parametersΔρmin = 0.59 e Å3
164 restraintsAbsolute structure: Flack (1983), 4226 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.38 (17)
Crystal data top
C7H13ClN2O2V = 3589.9 (5) Å3
Mr = 192.64Z = 16
Monoclinic, CcMo Kα radiation
a = 10.7393 (8) ŵ = 0.39 mm1
b = 33.613 (3) ÅT = 99 K
c = 9.9942 (7) Å0.30 × 0.10 × 0.10 mm
β = 95.704 (5)°
Data collection top
Siemens SMART CCD
diffractometer
8451 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 2003)
5276 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.962Rint = 0.082
39446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.158Δρmax = 0.56 e Å3
S = 1.04Δρmin = 0.59 e Å3
8451 reflectionsAbsolute structure: Flack (1983), 4226 Friedel pairs
307 parametersAbsolute structure parameter: 0.38 (17)
164 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin (here a polar twin) with a component ratio of 0.38/0.62. The final refinement restrained the four independent molecules to similar geometry using the SAME command of SHELXL, and EADP constraints were applied to equivalent atom pairs related by pseudosymmetry. Some residual electron density appeared to arise from partial disorder of the ethylene groups of two of the molecules over two sites (0.78:0.22) so the C atoms of the minor component were included with fixed isotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1793 (6)0.69065 (18)0.5906 (7)0.0257 (6)
H1A0.24290.66940.58860.031*
H1B0.19070.70950.51680.031*
C20.0503 (6)0.67256 (17)0.5692 (6)0.0295 (6)
H2A0.01330.69400.56150.035*
H2B0.04200.65720.48430.035*
C30.0387 (5)0.66860 (16)0.8026 (6)0.0299 (6)
H3A0.02110.65050.87670.036*
H3B0.02440.69010.79730.036*
C40.1672 (5)0.68631 (15)0.8331 (6)0.0245 (6)
H4A0.17010.70250.91610.029*
H4B0.23000.66480.84780.029*
C50.2610 (4)0.74577 (14)0.7460 (5)0.0216 (5)
C60.3614 (4)0.80530 (13)0.6609 (5)0.0241 (6)
H6A0.33230.81900.73970.029*
H6B0.34230.82250.58100.029*
C70.4988 (4)0.79800 (13)0.6835 (6)0.0317 (7)
H7A0.52720.78290.60700.038*
H7B0.51870.78220.76660.038*
N10.1972 (4)0.71155 (12)0.7195 (5)0.0201 (5)
N20.2967 (4)0.76644 (11)0.6398 (4)0.0308 (5)
H2C0.2820 (5)0.7572 (2)0.5612 (18)0.030*
O10.0284 (3)0.64694 (11)0.6785 (4)0.0297 (4)
O20.2846 (3)0.75889 (10)0.8630 (4)0.0292 (4)
Cl10.57778 (12)0.84633 (4)0.69906 (14)0.0372 (2)
C80.6779 (6)0.56216 (18)1.0240 (7)0.0257 (6)
H8A0.66540.54391.09930.031*
H8B0.61270.58301.02100.031*
C90.8058 (6)0.58091 (17)1.0459 (6)0.0295 (6)
H9A0.81080.59711.12910.035*
H9B0.86950.55961.05920.035*
C100.8262 (5)0.58296 (16)0.8153 (6)0.0299 (6)
H10A0.89000.56160.82370.036*
H10B0.84450.60050.74010.036*
C110.6986 (5)0.56463 (15)0.7835 (6)0.0245 (6)
H11A0.63520.58590.76610.029*
H11B0.69790.54810.70160.029*
C120.5946 (4)0.50722 (14)0.8711 (5)0.0216 (5)
C130.4970 (5)0.44776 (15)0.9575 (6)0.0241 (6)0.778 (4)
H13A0.51500.43131.03930.029*
H13B0.53100.43400.88150.029*
C140.3576 (5)0.45371 (16)0.9277 (7)0.0317 (7)0.778 (4)
H14A0.33930.46830.84200.038*
H14B0.32490.46941.00040.038*
N30.6675 (4)0.54001 (12)0.8967 (5)0.0201 (5)
N40.5548 (4)0.48731 (11)0.9778 (4)0.0308 (5)
H4C0.5635 (4)0.4978 (3)1.0565 (18)0.030*
O30.8346 (3)0.60560 (10)0.9370 (4)0.0297 (4)
O40.5687 (3)0.49474 (11)0.7551 (4)0.0292 (4)
Cl20.28368 (12)0.40510 (4)0.91603 (15)0.0372 (2)
C150.1664 (6)0.81124 (18)0.0959 (7)0.0268 (6)
H15A0.18300.79400.01940.032*
H15B0.22690.83350.10030.032*
C160.0353 (6)0.82743 (18)0.0734 (6)0.0317 (6)
H16A0.02730.84400.00890.038*
H16B0.02440.80500.05920.038*
C170.0137 (5)0.82715 (16)0.3030 (6)0.0283 (6)
H17A0.04650.80480.29150.034*
H17B0.00880.84370.37900.034*
C180.1445 (5)0.81076 (16)0.3359 (6)0.0245 (6)
H18A0.20350.83300.35800.029*
H18B0.14610.79320.41560.029*
C190.2757 (4)0.76025 (14)0.2480 (5)0.0220 (5)
C200.4416 (4)0.71961 (12)0.1643 (5)0.0251 (6)
H20A0.49280.72830.24700.030*
H20B0.49290.72260.08790.030*
C210.4066 (4)0.67709 (12)0.1778 (6)0.0270 (6)
H21A0.35540.66800.09560.032*
H21B0.35710.67360.25540.032*
N50.1841 (4)0.78819 (12)0.2215 (5)0.0199 (4)
N60.3293 (4)0.74516 (11)0.1419 (4)0.0298 (5)
H6C0.2982 (8)0.75040 (16)0.0619 (18)0.030*
O50.0041 (4)0.85058 (10)0.1835 (4)0.0321 (4)
O60.3081 (3)0.74858 (11)0.3645 (4)0.0281 (4)
Cl30.55040 (11)0.64849 (4)0.20263 (14)0.03441 (18)
C220.6776 (6)0.94101 (19)0.5227 (7)0.0268 (6)
H22A0.61750.91860.51900.032*
H22B0.66050.95860.59810.032*
C230.8101 (6)0.92532 (18)0.5449 (6)0.0317 (6)
H23A0.86900.94800.55570.038*
H23B0.81990.90950.62890.038*
C240.8292 (5)0.92350 (16)0.3134 (6)0.0283 (6)
H24A0.85020.90640.23820.034*
H24B0.88950.94590.32160.034*
C250.6977 (5)0.93984 (16)0.2819 (6)0.0245 (6)
H25A0.69420.95680.20060.029*
H25B0.63800.91760.26370.029*
C260.5745 (5)0.99248 (14)0.3691 (5)0.0220 (5)
C270.4059 (5)1.03184 (15)0.4504 (6)0.0251 (6)0.778 (4)
H27A0.35351.02780.52540.030*
H27B0.35741.02320.36600.030*
C280.4398 (5)1.07526 (15)0.4409 (6)0.0270 (6)0.778 (4)
H28A0.48971.07960.36410.032*
H28B0.49001.08390.52420.032*
N70.6630 (4)0.96323 (12)0.3958 (5)0.0199 (4)
N80.5208 (4)1.00824 (11)0.4736 (4)0.0298 (5)
H8C0.5529 (8)1.00457 (14)0.5510 (18)0.030*
O70.8412 (4)0.90094 (10)0.4351 (4)0.0321 (4)
O80.5435 (3)1.00387 (11)0.2531 (4)0.0281 (4)
Cl40.29550 (11)1.10319 (3)0.41732 (14)0.03441 (18)
C13A0.421 (2)0.4712 (5)0.954 (2)0.030*0.222 (4)
C14A0.442 (2)0.4253 (5)0.939 (2)0.030*0.222 (4)
C27A0.4955 (18)1.0541 (6)0.460 (2)0.030*0.222 (4)
C28A0.3506 (17)1.0513 (6)0.427 (2)0.030*0.222 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (14)0.0265 (13)0.0224 (14)0.0047 (11)0.0047 (11)0.0045 (11)
C20.0326 (15)0.0302 (14)0.0251 (15)0.0090 (12)0.0001 (11)0.0000 (11)
C30.0297 (15)0.0330 (13)0.0280 (15)0.0047 (12)0.0074 (12)0.0043 (11)
C40.0281 (15)0.0246 (12)0.0203 (13)0.0047 (11)0.0006 (11)0.0037 (10)
C50.0194 (12)0.0249 (12)0.0204 (13)0.0015 (10)0.0019 (10)0.0010 (10)
C60.0223 (14)0.0251 (14)0.0244 (14)0.0013 (12)0.0005 (11)0.0010 (11)
C70.0235 (15)0.0299 (14)0.0420 (18)0.0007 (12)0.0056 (13)0.0004 (13)
N10.0217 (12)0.0223 (10)0.0170 (11)0.0050 (9)0.0049 (9)0.0001 (8)
N20.0403 (13)0.0351 (12)0.0168 (11)0.0182 (10)0.0019 (9)0.0016 (9)
O10.0318 (11)0.0288 (9)0.0282 (11)0.0122 (8)0.0021 (8)0.0027 (8)
O20.0414 (11)0.0290 (9)0.0172 (9)0.0094 (8)0.0037 (8)0.0030 (7)
Cl10.0332 (4)0.0381 (4)0.0398 (4)0.0168 (3)0.0012 (3)0.0013 (3)
C80.0285 (14)0.0265 (13)0.0224 (14)0.0047 (11)0.0047 (11)0.0045 (11)
C90.0326 (15)0.0302 (14)0.0251 (15)0.0090 (12)0.0001 (11)0.0000 (11)
C100.0297 (15)0.0330 (13)0.0280 (15)0.0047 (12)0.0074 (12)0.0043 (11)
C110.0281 (15)0.0246 (12)0.0203 (13)0.0047 (11)0.0006 (11)0.0037 (10)
C120.0194 (12)0.0249 (12)0.0204 (13)0.0015 (10)0.0019 (10)0.0010 (10)
C130.0223 (14)0.0251 (14)0.0244 (14)0.0013 (12)0.0005 (11)0.0010 (11)
C140.0235 (15)0.0299 (14)0.0420 (18)0.0007 (12)0.0056 (13)0.0004 (13)
N30.0217 (12)0.0223 (10)0.0170 (11)0.0050 (9)0.0049 (9)0.0001 (8)
N40.0403 (13)0.0351 (12)0.0168 (11)0.0182 (10)0.0019 (9)0.0016 (9)
O30.0318 (11)0.0288 (9)0.0282 (11)0.0122 (8)0.0021 (8)0.0027 (8)
O40.0414 (11)0.0290 (9)0.0172 (9)0.0094 (8)0.0037 (8)0.0030 (7)
Cl20.0332 (4)0.0381 (4)0.0398 (4)0.0168 (3)0.0012 (3)0.0013 (3)
C150.0322 (16)0.0287 (13)0.0202 (14)0.0083 (12)0.0063 (11)0.0035 (10)
C160.0370 (16)0.0325 (14)0.0244 (15)0.0131 (12)0.0034 (12)0.0021 (11)
C170.0247 (14)0.0296 (13)0.0310 (15)0.0063 (11)0.0056 (11)0.0024 (11)
C180.0249 (14)0.0261 (12)0.0227 (14)0.0040 (11)0.0042 (11)0.0027 (10)
C190.0245 (13)0.0234 (12)0.0185 (13)0.0012 (10)0.0043 (10)0.0012 (10)
C200.0209 (15)0.0286 (13)0.0271 (15)0.0016 (12)0.0082 (11)0.0033 (11)
C210.0211 (15)0.0274 (14)0.0322 (16)0.0013 (12)0.0005 (12)0.0019 (12)
N50.0233 (11)0.0192 (9)0.0175 (11)0.0023 (8)0.0028 (8)0.0001 (8)
N60.0396 (13)0.0344 (11)0.0156 (11)0.0191 (10)0.0035 (9)0.0012 (9)
O50.0360 (11)0.0303 (9)0.0293 (11)0.0126 (8)0.0001 (8)0.0031 (8)
O60.0343 (10)0.0338 (9)0.0163 (9)0.0116 (8)0.0031 (7)0.0021 (7)
Cl30.0318 (4)0.0353 (3)0.0355 (4)0.0150 (3)0.0002 (3)0.0016 (3)
C220.0322 (16)0.0287 (13)0.0202 (14)0.0083 (12)0.0063 (11)0.0035 (10)
C230.0370 (16)0.0325 (14)0.0244 (15)0.0131 (12)0.0034 (12)0.0021 (11)
C240.0247 (14)0.0296 (13)0.0310 (15)0.0063 (11)0.0056 (11)0.0024 (11)
C250.0249 (14)0.0261 (12)0.0227 (14)0.0040 (11)0.0042 (11)0.0027 (10)
C260.0245 (13)0.0234 (12)0.0185 (13)0.0012 (10)0.0043 (10)0.0012 (10)
C270.0209 (15)0.0286 (13)0.0271 (15)0.0016 (12)0.0082 (11)0.0033 (11)
C280.0211 (15)0.0274 (14)0.0322 (16)0.0013 (12)0.0005 (12)0.0019 (12)
N70.0233 (11)0.0192 (9)0.0175 (11)0.0023 (8)0.0028 (8)0.0001 (8)
N80.0396 (13)0.0344 (11)0.0156 (11)0.0191 (10)0.0035 (9)0.0012 (9)
O70.0360 (11)0.0303 (9)0.0293 (11)0.0126 (8)0.0001 (8)0.0031 (8)
O80.0343 (10)0.0338 (9)0.0163 (9)0.0116 (8)0.0031 (7)0.0021 (7)
Cl40.0318 (4)0.0353 (3)0.0355 (4)0.0150 (3)0.0002 (3)0.0016 (3)
Geometric parameters (Å, º) top
C1—N11.463 (6)C15—C161.506 (7)
C1—C21.509 (7)C16—O51.415 (6)
C2—O11.429 (6)C17—O51.426 (6)
C3—O11.433 (6)C17—C181.514 (6)
C3—C41.506 (6)C18—N51.470 (6)
C4—N11.478 (6)C19—O61.244 (6)
C5—O21.252 (6)C19—N61.354 (6)
C5—N11.352 (6)C19—N51.367 (6)
C5—N21.355 (6)C20—N61.480 (5)
C6—N21.485 (5)C20—C211.487 (5)
C6—C71.491 (5)C21—Cl31.815 (5)
C7—Cl11.832 (4)C22—N71.467 (6)
C8—N31.469 (6)C22—C231.513 (7)
C8—C91.507 (7)C23—O71.435 (6)
C9—O31.427 (6)C24—O71.428 (6)
C10—O31.430 (6)C24—C251.519 (6)
C10—C111.507 (6)C25—N71.462 (6)
C11—N31.466 (6)C26—O81.235 (5)
C12—O41.239 (6)C26—N81.351 (6)
C12—N31.362 (6)C26—N71.375 (6)
C12—N41.362 (6)C27—N81.466 (6)
C13—N41.473 (6)C27—C281.509 (7)
C13—C141.510 (7)C28—Cl41.807 (5)
C14—Cl21.815 (5)C13A—C14A1.568 (16)
C15—N51.471 (6)C27A—C28A1.561 (17)
N1—C1—C2110.9 (5)N5—C15—C16110.9 (5)
O1—C2—C1110.7 (5)O5—C16—C15111.9 (5)
O1—C3—C4111.5 (5)O5—C17—C18111.8 (5)
N1—C4—C3109.7 (5)N5—C18—C17110.7 (5)
O2—C5—N1122.3 (5)O6—C19—N6120.9 (4)
O2—C5—N2120.3 (4)O6—C19—N5121.8 (5)
N1—C5—N2117.4 (5)N6—C19—N5117.3 (5)
N2—C6—C7108.6 (4)N6—C20—C21111.2 (4)
C6—C7—Cl1108.0 (3)C20—C21—Cl3107.6 (3)
C5—N1—C1126.9 (5)C19—N5—C18117.6 (5)
C5—N1—C4118.9 (5)C19—N5—C15123.8 (5)
C1—N1—C4112.4 (4)C18—N5—C15111.6 (4)
C5—N2—C6120.3 (4)C19—N6—C20120.1 (4)
C2—O1—C3110.6 (4)C16—O5—C17110.2 (4)
N3—C8—C9109.1 (5)N7—C22—C23108.8 (5)
O3—C9—C8113.4 (5)O7—C23—C22112.0 (5)
O3—C10—C11112.1 (5)O7—C24—C25111.8 (5)
N3—C11—C10109.9 (5)N7—C25—C24109.7 (5)
O4—C12—N3121.4 (5)O8—C26—N8120.5 (4)
O4—C12—N4120.5 (4)O8—C26—N7121.4 (5)
N3—C12—N4118.1 (5)N8—C26—N7118.0 (5)
N4—C13—C14107.7 (4)N8—C27—C28109.2 (4)
C13—C14—Cl2108.2 (4)C27—C28—Cl4107.5 (4)
C12—N3—C11118.9 (5)C26—N7—C25117.3 (5)
C12—N3—C8124.4 (5)C26—N7—C22123.0 (5)
C11—N3—C8112.3 (4)C25—N7—C22112.7 (4)
C12—N4—C13119.8 (4)C26—N8—C27120.5 (4)
C9—O3—C10109.8 (4)C24—O7—C23109.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O60.852.032.831 (6)157
N4—H4C···O4i0.862.002.826 (6)162
N6—H6C···O2ii0.852.002.819 (6)161
N8—H8C···O8iii0.822.052.809 (6)153
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z1; (iii) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O60.852.032.831 (6)156.9
N4—H4C···O4i0.862.002.826 (6)162.3
N6—H6C···O2ii0.852.002.819 (6)160.7
N8—H8C···O8iii0.822.052.809 (6)152.6
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z1; (iii) x, y+2, z+1/2.
 

Acknowledgements

We thank the Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, for some financial assistant and Dr Tania Groutso, University of Auckland, for the data collection.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenderson, W., Chong, S. H. & Andy Hor, T. S. (2006). Inorg. Chim. Acta, 359, 3440–3450.  Web of Science CrossRef CAS Google Scholar
First citationLainton, J. A., Allen, M. C., Burton, M., Cameron, S., Edwards, T. R., Harden, G., Hogg, R., Leung, W., Miller, S., Morrish, J. J., Rooke, S. M. & Wendt, B. (2003). J. Comb. Chem. 5, 400–407.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUjam, O. T., Devoy, S. M., Henderson, W., Nicholson, B. K. & Andy Hor, T. S. (2010). Inorg. Chim. Acta, 363, 3558–3568.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds