organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o486-o487

4-Bromo-2-(5-bromo­thio­phen-2-yl)-1-[(5-bromo­thio­phen-2-yl)meth­yl]-5,6-di­methyl-1H-benzimidazole

aDepartment of Chemistry, State University of New York-College at Geneseo, 1 College Circle, Geneseo, NY 14454, USA
*Correspondence e-mail: geiger@geneseo.edu

(Received 19 March 2014; accepted 20 March 2014; online 26 March 2014)

The title compound, C18H13Br3N2S2, was obtained via the reaction of N-bromo­succinamide with 5,6-dimethyl-2-(thio­phen-2-yl)-1-[(thio­phen-2-yl)meth­yl]-1H-benzimidazole. The compound exhibits rotational disorder of the 5-bromo­thio­phen-2-yl substituent with a refined major:minor occupancy ratio of 0.876 (7):0.124 (7). The 5-bromo­thio­phen-2-yl mean plane is canted to the benzimidazole plane by 20.0 (4) and 21 (4)° in the major and minor components, respectively. In the crystal, weak C—H⋯N inter­actions link the mol­ecules into infinite C(7) chains along the 21 axes.

Related literature

Bromination of thio­phenes using N-bromo­succinamide has been reported by Arsenyan et al. (2010[Arsenyan, P., Paegle, E. & Belyakov, S. (2010). Tetrahedron Lett. 51, 205-208.]). For the structure of 5,6-di­methyl­benzimidazole, see: Lee & Scheidt (1986[Lee, YoungJa & Scheidt, W. R. (1986). Acta Cryst. C42, 1652-1654.]). For the structure of 2-(thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole, see: Geiger et al. (2012[Geiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.]). For the 5-chloro derivative, see: Geiger & Nellist (2013a[Geiger, D. K. & Nellist, M. R. (2013a). Acta Cryst. E69, o1539-o1540.]), for the 6-chloro derivative, see: Geiger & Nellist (2013b[Geiger, D. K. & Nellist, M. R. (2013b). Acta Cryst. E69, o807.]) and for the 6-bromo derivative, see: Geiger & Destefano (2012[Geiger, D. K. & Destefano, M. R. (2012). Acta Cryst. E68, o3123.]). For a discussion of the biological activity of benzimidazole derivatives, see: López-Rodríguez et al. (1999[López-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020-5028.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Br3N2S2

  • Mr = 561.15

  • Monoclinic, P 21 /n

  • a = 13.6796 (13) Å

  • b = 9.6144 (8) Å

  • c = 14.8093 (15) Å

  • β = 98.305 (3)°

  • V = 1927.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.50 mm−1

  • T = 200 K

  • 0.60 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.35, Tmax = 0.56

  • 12301 measured reflections

  • 3561 independent reflections

  • 2810 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.179

  • S = 1.06

  • 3561 reflections

  • 247 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2i 0.95 2.57 3.461 (10) 156
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013[Sheldrick, G. M. (2013). University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives have numerous pharmacological uses. Examples include inhibitors of serotonin activated neurotransmission drugs (López-Rodríguez et al., 1999) and antiarrhythmic, antihistamine, antiulcer, anticancer, fungicidal, and anthelmintical drugs (Horton et al., 2003). The title compound was prepared as part of our efforts to characterize benzimidazole analogues with thiophene substitutents (Geiger & Nellist, 2013a; Geiger & Nellist, 2013b; Geiger & Destefano, 2012; Geiger et al., 2012).

The title compound was prepared serendipitously during the attempted bromination of the methyl substituents of 5,6-dimethyl-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H- benzimidazole. Bromination of the positions adjacent to the sulfur atom in thiophene and thiophene derivatives with N-bromosuccinamide (NBS)using ultrasonic irradiation has been reported by Arsenyan et al. (2010). In all cases, bromination occurs at sites adjacent to the sulfur atom. Based on this observation, it is not surprising that the two thiophene groups are brominated in the title complex. However, bromination of the benzene ring using NBS is not expected, as free radical bromination is expected to occur at the benzylic positions.

Compound I crystallizes with one molecule in the asymmetric unit. A perspective view of the molecule with the atom-labeling scheme is shown in figure 1. The benzimidazole ring system is essentially planar. The largest deviation from planarity is 0.017 (6) Å for C5. The 2-(5-bromothiophen-2-yl) plane is canted 20.0 (4)o and 21 (4)o to the benzimidazole plane in the major and minor disorder components, respectively.

The extended structure exhibits chains along the 21 screw axes formed by weak intermolecular C—H···N hydrogen bonds (Table 1) involving one of the 5-bromothiophen-2-ylmethyl hydrogen atoms (H14) and the unsubstitued benzimidazole nitrogen atom (N2). The result is infinite C(7) chains. Figure 2 displays a packing diagram exhibiting the chains parallel to [0 1 0].

An additional close contact between bromine atoms on molecules related by the glide plane is observed. The Br2···Br10 distance is 3.041 (19) Å (Br10 is part of the minor component of the disordered 5-bromothiophen-2-yl substituent.) The Br2···Br1 (Br1 is the bromine of the major component) distance is 3.653 (3) Å.

Related literature top

Bromination of thiophenes using N-bromosuccinamide has been reported by Arsenyan et al. (2010). For the structure of 5,6-dimethylbenzimidazole, see: Lee & Scheidt (1986). For the structure of 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole, see: Geiger et al. (2012). For the 5-chloro derivative, see: Geiger & Nellist (2013a), for the 6-chloro derivative, see: Geiger & Nellist (2013b) and for the 6-bromo derivative, see: Geiger & Destefano (2012). For a discussion of the biological activity of benzimidazole derivatives, see: López-Rodríguez et al. (1999); Horton et al. (2003).

Experimental top

The title compound was prepared by a photoinitiated reaction of N-bromosuccimide (1.10 g, 6.18 mmole) and 5,6-dimethyl-2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole (0.864 g, 2.66 mmole) in refluxing carbon tetrachloride (20 mL). Based on GC—MS results, the material isolated was a mixture of a mono-, di- and tri-brominated components. Attempts to separate the components by column chromatography or recrystallization were unsuccessful. Based on a comparison of a 1H NMR spectrum of the product mixture and simulated spectra of mono-, di- and tri-brominated products, the reaction product mixture is approximately 50% tri-brominated species. Single crystals of the tribromo component (the title compound) were obtained by slow vapor diffusion of hexanes into a chloroform solution of the product mixture.

Refinement top

During the later stages of refinement, it became obvious that the molecule exhibited rotational disorder about the 5-bromothiophen-2-yl substituent. The disorder was successfully modeled using the metrics of the major component to define the minor component. Similarity restraints were used for the bond distances using SAME and anisotropic displacement parameters of the minor component atoms were constrained to those of the major component using EADP. The structure converged with a refined major:minor occupancy ratio of 0.876 (7):0.124 (7). All hydrogen atoms were observed in difference Fourier fourier maps. The H atoms were refined using a riding model with a C—H distance of 0.99 Å for the methylene carbon atoms, 0.98 Å for the methyl carbon atoms and 0.95 Å for the phenyl and thiophene carbon atoms. The methyl C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.5Ueq(C). All other C—H hydrogen atom isotropic displacement parameters were set using the approximation Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with anisotropic displacement parameters of nonhydrogen atoms drawn at the 50% probability level. Only the major contributor to the disordered bromothiophene substituent is shown.
[Figure 2] Fig. 2. A packing diagram emphasizing the weak C—H···N hydrogen bonds that link molecules along the 21 screw axes. All hydrogen atoms except H14 have been omitted for clarity.
4-Bromo-2-(5-bromothiophen-2-yl)-1-[(5-bromothiophen-2-yl)methyl]-5,6-dimethyl-1H-benzimidazole top
Crystal data top
C18H13Br3N2S2F(000) = 1088
Mr = 561.15Dx = 1.934 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4288 reflections
a = 13.6796 (13) Åθ = 2.5–25.0°
b = 9.6144 (8) ŵ = 6.50 mm1
c = 14.8093 (15) ÅT = 200 K
β = 98.305 (3)°Plate, clear colourless
V = 1927.3 (3) Å30.60 × 0.40 × 0.10 mm
Z = 4
Data collection top
Bruker SMART X2S benchtop
diffractometer
3561 independent reflections
Radiation source: sealed microfocus tube2810 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.036
Detector resolution: 8.3330 pixels mm-1θmax = 25.5°, θmin = 1.9°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1111
Tmin = 0.35, Tmax = 0.56l = 1711
12301 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0876P)2 + 13.3538P]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.87 e Å3
16 restraintsΔρmin = 1.90 e Å3
Crystal data top
C18H13Br3N2S2V = 1927.3 (3) Å3
Mr = 561.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6796 (13) ŵ = 6.50 mm1
b = 9.6144 (8) ÅT = 200 K
c = 14.8093 (15) Å0.60 × 0.40 × 0.10 mm
β = 98.305 (3)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
3561 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2810 reflections with I > 2σ(I)
Tmin = 0.35, Tmax = 0.56Rint = 0.036
12301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05616 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0876P)2 + 13.3538P]
where P = (Fo2 + 2Fc2)/3
3561 reflectionsΔρmax = 0.87 e Å3
247 parametersΔρmin = 1.90 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6567 (5)0.4489 (7)0.0616 (5)0.0297 (15)
C20.5806 (5)0.3747 (7)0.0935 (5)0.0291 (15)
C30.5164 (5)0.2979 (7)0.0299 (5)0.0328 (16)
C40.5271 (6)0.2972 (7)0.0623 (5)0.0345 (17)
C50.6069 (6)0.3752 (9)0.0909 (5)0.0388 (18)
C60.6698 (6)0.4519 (8)0.0296 (5)0.0341 (16)
H60.72110.50580.04910.041*
C410.4614 (7)0.2091 (9)0.1300 (6)0.048 (2)
H41A0.49830.12750.1460.071*
H41B0.43950.26370.1850.071*
H41C0.40370.17870.10290.071*
C510.6220 (7)0.3744 (12)0.1887 (5)0.055 (2)
H51A0.67320.4420.19790.083*
H51B0.560.39920.22710.083*
H51C0.64260.28130.20530.083*
Br30.41595 (6)0.19379 (9)0.07516 (6)0.0461 (3)
N10.7086 (4)0.5125 (6)0.1385 (4)0.0291 (13)
C70.6621 (5)0.4710 (7)0.2112 (5)0.0282 (15)
N20.5860 (4)0.3888 (6)0.1866 (4)0.0284 (13)
C80.6925 (12)0.5165 (15)0.3059 (6)0.0252 (18)0.876 (7)
C90.7801 (11)0.5660 (14)0.3497 (7)0.031 (2)0.876 (7)
H90.83650.58030.32030.037*0.876 (7)
C100.7787 (8)0.5937 (9)0.4431 (6)0.030 (2)0.876 (7)
H100.83340.62880.48350.036*0.876 (7)
C110.6903 (8)0.5643 (9)0.4674 (5)0.032 (2)0.876 (7)
S10.6069 (8)0.5018 (9)0.3795 (3)0.0336 (12)0.876 (7)
Br10.65371 (11)0.5955 (3)0.58337 (8)0.0544 (5)0.876 (7)
C800.685 (8)0.502 (10)0.302 (3)0.0252 (18)0.124 (7)
C900.775 (7)0.543 (11)0.347 (4)0.031 (2)0.124 (7)
H900.83040.56030.31660.037*0.124 (7)
C1000.777 (5)0.557 (9)0.442 (4)0.030 (2)0.124 (7)
H1000.83380.58360.48290.036*0.124 (7)
C1100.689 (4)0.529 (7)0.4662 (19)0.032 (2)0.124 (7)
S100.602 (6)0.480 (8)0.377 (2)0.0336 (12)0.124 (7)
Br100.6580 (9)0.530 (2)0.5862 (6)0.0544 (5)0.124 (7)
C120.7869 (5)0.6148 (7)0.1354 (5)0.0312 (16)
H12A0.78510.68240.18560.037*
H12B0.77340.66660.07720.037*
C130.8884 (5)0.5541 (7)0.1435 (4)0.0267 (15)
C140.9740 (6)0.6115 (9)0.1828 (5)0.0399 (18)
H140.97730.69710.21510.048*
C151.0593 (6)0.5319 (9)0.1713 (6)0.0426 (19)
H151.12510.55730.1950.051*
C161.0341 (6)0.4152 (8)0.1220 (5)0.0387 (18)
S20.90879 (16)0.3984 (2)0.09103 (14)0.0396 (5)
Br21.11809 (9)0.28087 (11)0.08705 (7)0.0637 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (4)0.020 (3)0.032 (4)0.003 (3)0.005 (3)0.001 (3)
C20.034 (4)0.021 (3)0.032 (4)0.009 (3)0.003 (3)0.003 (3)
C30.033 (4)0.025 (4)0.037 (4)0.003 (3)0.005 (3)0.003 (3)
C40.037 (4)0.029 (4)0.035 (4)0.015 (3)0.004 (3)0.001 (3)
C50.040 (4)0.046 (5)0.029 (4)0.019 (4)0.002 (3)0.004 (3)
C60.038 (4)0.035 (4)0.029 (4)0.005 (3)0.007 (3)0.002 (3)
C410.049 (5)0.050 (5)0.039 (4)0.007 (4)0.010 (4)0.009 (4)
C510.049 (5)0.086 (7)0.030 (4)0.023 (5)0.000 (4)0.001 (4)
Br30.0447 (5)0.0381 (5)0.0518 (5)0.0119 (4)0.0055 (4)0.0037 (4)
N10.034 (3)0.026 (3)0.027 (3)0.006 (3)0.004 (2)0.002 (2)
C70.033 (4)0.021 (3)0.031 (4)0.002 (3)0.006 (3)0.001 (3)
N20.031 (3)0.021 (3)0.032 (3)0.002 (2)0.002 (2)0.001 (2)
C80.030 (5)0.017 (4)0.029 (3)0.003 (3)0.007 (3)0.002 (3)
C90.030 (4)0.029 (6)0.033 (4)0.007 (4)0.005 (3)0.001 (3)
C100.036 (4)0.023 (6)0.029 (4)0.006 (4)0.000 (3)0.001 (4)
C110.050 (5)0.019 (5)0.027 (4)0.002 (4)0.006 (3)0.003 (3)
S10.0328 (17)0.038 (4)0.0307 (10)0.0099 (19)0.0077 (9)0.0001 (11)
Br10.0781 (7)0.0542 (15)0.0354 (5)0.0216 (8)0.0230 (5)0.0079 (6)
C800.030 (5)0.017 (4)0.029 (3)0.003 (3)0.007 (3)0.002 (3)
C900.030 (4)0.029 (6)0.033 (4)0.007 (4)0.005 (3)0.001 (3)
C1000.036 (4)0.023 (6)0.029 (4)0.006 (4)0.000 (3)0.001 (4)
C1100.050 (5)0.019 (5)0.027 (4)0.002 (4)0.006 (3)0.003 (3)
S100.0328 (17)0.038 (4)0.0307 (10)0.0099 (19)0.0077 (9)0.0001 (11)
Br100.0781 (7)0.0542 (15)0.0354 (5)0.0216 (8)0.0230 (5)0.0079 (6)
C120.039 (4)0.025 (3)0.031 (4)0.006 (3)0.008 (3)0.003 (3)
C130.035 (4)0.023 (3)0.024 (3)0.001 (3)0.009 (3)0.001 (3)
C140.044 (5)0.037 (4)0.039 (4)0.000 (4)0.007 (4)0.006 (3)
C150.032 (4)0.052 (5)0.046 (5)0.000 (4)0.011 (3)0.002 (4)
C160.041 (5)0.042 (4)0.036 (4)0.009 (4)0.014 (3)0.005 (3)
S20.0445 (11)0.0302 (10)0.0444 (11)0.0010 (9)0.0071 (9)0.0083 (8)
Br20.0795 (7)0.0563 (6)0.0619 (6)0.0217 (5)0.0329 (5)0.0114 (5)
Geometric parameters (Å, º) top
C1—C61.389 (10)C9—C101.410 (10)
C1—N11.393 (9)C9—H90.95
C1—C21.399 (10)C10—C111.341 (11)
C2—N21.376 (9)C10—H100.95
C2—C31.402 (10)C11—S11.711 (8)
C3—C41.394 (11)C11—Br11.882 (8)
C3—Br31.899 (8)C80—C901.36 (2)
C4—C51.439 (12)C80—S101.717 (19)
C4—C411.506 (11)C90—C1001.41 (2)
C5—C61.372 (11)C90—H900.95
C5—C511.492 (11)C100—C1101.34 (2)
C6—H60.95C100—H1000.95
C41—H41A0.98C110—S101.710 (19)
C41—H41B0.98C110—Br101.884 (18)
C41—H41C0.98C12—C131.494 (10)
C51—H51A0.98C12—H12A0.99
C51—H51B0.98C12—H12B0.99
C51—H51C0.98C13—C141.349 (11)
N1—C71.387 (9)C13—S21.728 (7)
N1—C121.460 (9)C14—C151.426 (11)
C7—N21.317 (9)C14—H140.95
C7—C801.37 (5)C15—C161.356 (12)
C7—C81.470 (11)C15—H150.95
C8—C91.363 (10)C16—S21.717 (8)
C8—S11.717 (7)C16—Br21.852 (8)
C6—C1—N1131.5 (7)C8—C9—C10113.4 (7)
C6—C1—C2123.1 (7)C8—C9—H9123.3
N1—C1—C2105.3 (6)C10—C9—H9123.3
N2—C2—C1110.7 (6)C11—C10—C9111.3 (7)
N2—C2—C3131.5 (7)C11—C10—H10124.4
C1—C2—C3117.8 (7)C9—C10—H10124.4
C4—C3—C2121.1 (7)C10—C11—S1113.5 (6)
C4—C3—Br3121.7 (6)C10—C11—Br1125.5 (6)
C2—C3—Br3117.1 (5)S1—C11—Br1120.9 (5)
C3—C4—C5118.5 (7)C11—S1—C890.7 (4)
C3—C4—C41121.2 (8)C90—C80—C7127 (6)
C5—C4—C41120.2 (7)C90—C80—S10111.0 (17)
C6—C5—C4121.0 (7)C7—C80—S10122 (6)
C6—C5—C51118.9 (8)C80—C90—C100114 (2)
C4—C5—C51120.0 (8)C80—C90—H90123.2
C5—C6—C1118.4 (7)C100—C90—H90123.2
C5—C6—H6120.8C110—C100—C90111 (2)
C1—C6—H6120.8C110—C100—H100124.5
C4—C41—H41A109.5C90—C100—H100124.5
C4—C41—H41B109.5C100—C110—S10113.7 (16)
H41A—C41—H41B109.5C100—C110—Br10126 (2)
C4—C41—H41C109.5S10—C110—Br10120 (2)
H41A—C41—H41C109.5C110—S10—C8090.7 (13)
H41B—C41—H41C109.5N1—C12—C13114.3 (6)
C5—C51—H51A109.5N1—C12—H12A108.7
C5—C51—H51B109.5C13—C12—H12A108.7
H51A—C51—H51B109.5N1—C12—H12B108.7
C5—C51—H51C109.5C13—C12—H12B108.7
H51A—C51—H51C109.5H12A—C12—H12B107.6
H51B—C51—H51C109.5C14—C13—C12127.9 (7)
C7—N1—C1105.8 (6)C14—C13—S2111.2 (6)
C7—N1—C12129.7 (6)C12—C13—S2120.7 (5)
C1—N1—C12124.1 (6)C13—C14—C15113.8 (7)
N2—C7—C80118 (4)C13—C14—H14123.1
N2—C7—N1113.0 (6)C15—C14—H14123.1
C80—C7—N1129 (4)C16—C15—C14111.1 (7)
N2—C7—C8123.1 (7)C16—C15—H15124.5
N1—C7—C8123.9 (7)C14—C15—H15124.5
C7—N2—C2105.2 (6)C15—C16—S2112.9 (6)
C9—C8—C7131.8 (10)C15—C16—Br2127.4 (6)
C9—C8—S1111.1 (6)S2—C16—Br2119.7 (5)
C7—C8—S1117.1 (8)C16—S2—C1391.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.952.573.461 (10)156
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.952.573.461 (10)155.5
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Congressionally directed grant from the US Department of Education (grant No. P116Z100020) for the X-ray diffractometer and a grant from the Geneseo Foundation.

References

First citationArsenyan, P., Paegle, E. & Belyakov, S. (2010). Tetrahedron Lett. 51, 205–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeiger, D. K. & Destefano, M. R. (2012). Acta Cryst. E68, o3123.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K., Geiger, H. C., Williams, L. & Noll, B. C. (2012). Acta Cryst. E68, o420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Nellist, M. R. (2013a). Acta Cryst. E69, o1539–o1540.  CSD CrossRef IUCr Journals Google Scholar
First citationGeiger, D. K. & Nellist, M. R. (2013b). Acta Cryst. E69, o807.  CSD CrossRef IUCr Journals Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, YoungJa & Scheidt, W. R. (1986). Acta Cryst. C42, 1652–1654.  Google Scholar
First citationLópez-Rodríguez, M. L., Benhamú, B., Morcillo, M. J., Tejeda, I. D., Orensanz, L., Alfaro, M. J. & Martín, M. I. (1999). J. Med. Chem. 42, 5020–5028.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2013). University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o486-o487
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds