metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hepta­carbonyl­bis­­(μ-propane-1,3-di­thiol­ato)triiron(I,II)(2 FeFe)

aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: ccn@fjirsm.ac.cn

(Received 18 February 2014; accepted 28 February 2014; online 8 March 2014)

The trinuclear title compound, [Fe3(C3H6S2)2(CO)7], is a mixed-valent FeI/FeII complex and crystallizes with two mol­ecules of similar configuration in the asymmetric unit. The three Fe atoms in each mol­ecule display a bent arrangement [Fe—Fe—Fe = 156.22 (4) and 157.06 (3)°]. Both outer FeI atoms are six-coordinated in a distorted ocahedral coordination geometry defined by the bridging FeII atom, three carbonyl C atoms and two bridging S atoms. The coordination number of the central FeII atom is seven and includes bonding to the two outer FeI atoms, four bridging S atoms and one carbonyl C atom. The resulting coordination polyhedron might be described as a highly distorted monocapped trigonal prism. In the crystal packing, the mol­ecules exhibit a chain-like arrangement parallel to [100] and [001], and the resulting layers are stacked along [010]. The cohesion of the structure is dominated by van der Waals inter­actions.

Related literature

For models of the active sites of Fe—Fe hydrogenases, see: Tard et al. (2005[Tard, C., Liu, X. M., Hughes, D. L. & Pickett, C. J. (2005). Chem. Commun. pp. 133-135.]); Best et al. (2007[Best, S. P., Borg, S. J., White, J. M., Razavet, M. & Pickett, C. J. (2007). Chem. Commun. pp. 4348-4350.]). For the structures of similar trinuclear mixed-valence iron complexes, see: Winter et al. (1982[Winter, A., Zsolnai, L. & Huttner, G. (1982). Z. Naturforsch. Teil B, 37, 1430-1436.]); Ghosh et al. (2011[Ghosh, S., Hogarth, G., Holt, K. B., Kabir, S. E., Rahaman, A. & Unwin, D. G. (2011). Chem. Commun. 47, 11222-11224.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe3(C3H6S2)2(CO)7]

  • Mr = 576.02

  • Orthorhombic, P 21 21 21

  • a = 10.251 (3) Å

  • b = 12.838 (4) Å

  • c = 30.915 (9) Å

  • V = 4068 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Rigaku Saturn724+ CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]) Tmin = 0.592, Tmax = 1.000

  • 35336 measured reflections

  • 9231 independent reflections

  • 8082 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.056

  • S = 0.86

  • 9231 reflections

  • 488 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4075 Friedel pairs

  • Absolute structure parameter: 0.016 (13)

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, [FeI/II3(C3H6S2)2(CO)7] (I), was prepared as a model compound for the active sites of Fe—Fe hydrogenases and structurally characterized by single-crystal X-ray diffraction. Such models have been reported for similar other compounds, e.g. Fe4[H3CC(CH2S)3]2(CO)8 (Tard et al., 2005) and [Fe4(S(CH2)2S)2(CO)2(CO)8]22- (Best et al., 2007).

Compound (I) crystallizes with two independent trinuclear iron molecules in the asymmetric unit. Formally, the three iron atoms in each molecule exhibit a mixed-valence, with the central Fe atom in oxidation state +II and the two lateral Fe atoms in oxidation state +I. Both molecules have a similar configuration and similar bond lengths and angles. The three Fe atoms display a slightly bent Fe3 core with Fe—Fe—Fe angles of 156.22 (4)° and 157.06 (3)°), respectively (Fig. 1). The outer FeI atoms are each six-coordinated by the central FeII atom (Fe—Fe: 2.56 Å), by three terminal carbonyl C atoms and by two bridging S atoms (Fe—S: 2.26 Å), leading to an overall distorted o­cta­hedral coordination environment. The central FeII atom is seven-coordinated. It is bound to the two lateral Fe atoms, to four bridging S atoms (Fe—S: 2.23-2.27 Å) and to one carbonyl group (Fe—C: 1.76 Å), completing a highly distorted monocapped trigonal-prismatic coordination environment.

In the crystal, the molecules are arranged in chains extending parallel to [100] and [001], resulting in a layer-like arrangement. These layers are stacked along [010] (Fig. 2). The main forces keeping the structure stabilized are van der Waals inter­actions.

Structures of similar trinuclear mixed-valence iron complexes have been reported by Winter et al. (1982) and Ghosh et al. (2011).

Experimental top

Reactions were carried out under an atmosphere of purified nitro­gen, using standard Schlenk techniques. 5 g of Fe3(CO)12 were suspended in 200 mL of THF followed by the addition of two equivalents of 1,3-propane­dithiol. The reaction mixture was stirred at 343 k until its color changed from deep green to dark red. The reaction mixture was allowed to cool to room temperature and was filtered. The volume was reduced under vacuum to ca. 5 mL, and passed through a 25 X 3.0 cm column of silica gel, eluting with hexane. The eluting CH2Cl2 solution of a second run was collected and evaporated to dryness under vacuum. Red crystals of (I) were obtained from a hexane/CH2Cl2 solution at 253 K.

Refinement top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.97Å, and refined in a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Related literature top

For models of the active sites of Fe—Fe hydrogenases, see: Tard et al. (2005); Best et al. (2007). For the structures of similar trinuclear mixed-valence iron complexes, see: Winter et al. (1982); Ghosh et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Only one of the two independent molecules is displayed, and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for (I), viewed along [100]. H atoms have been omitted for clarity.
Heptacarbonylbis(µ-propane-1,3-dithiolato)triiron(I,II)(2 FeFe) top
Crystal data top
[Fe3(C3H6S2)2(CO)7]F(000) = 2304
Mr = 576.02Dx = 1.881 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.710747 Å
Hall symbol: P 2ac 2abCell parameters from 13590 reflections
a = 10.251 (3) Åθ = 2.1–27.4°
b = 12.838 (4) ŵ = 2.55 mm1
c = 30.915 (9) ÅT = 293 K
V = 4068 (2) Å3Prism, red
Z = 80.25 × 0.20 × 0.12 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
9231 independent reflections
Graphite Monochromator monochromator8082 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.071
CCD_Profile_fitting scansθmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 813
Tmin = 0.592, Tmax = 1.000k = 1616
35336 measured reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
9231 reflectionsΔρmax = 0.43 e Å3
488 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 4075 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (13)
Crystal data top
[Fe3(C3H6S2)2(CO)7]V = 4068 (2) Å3
Mr = 576.02Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 10.251 (3) ŵ = 2.55 mm1
b = 12.838 (4) ÅT = 293 K
c = 30.915 (9) Å0.25 × 0.20 × 0.12 mm
Data collection top
Rigaku Saturn724+ CCD
diffractometer
9231 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
8082 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 1.000Rint = 0.071
35336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.43 e Å3
S = 0.86Δρmin = 0.56 e Å3
9231 reflectionsAbsolute structure: Flack (1983), 4075 Friedel pairs
488 parametersAbsolute structure parameter: 0.016 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe11.04804 (6)0.49655 (6)0.03335 (2)0.04003 (16)
Fe20.81125 (6)0.50119 (5)0.059552 (18)0.03290 (14)
Fe30.61279 (7)0.57503 (6)0.09894 (2)0.04215 (17)
Fe40.36509 (6)0.91038 (5)0.19958 (2)0.03942 (16)
Fe50.12719 (6)0.97257 (5)0.198539 (19)0.03369 (15)
Fe60.07197 (6)1.07640 (5)0.17247 (2)0.03880 (16)
S10.98615 (11)0.53021 (9)0.10260 (3)0.0396 (3)
S20.90097 (12)0.62123 (9)0.01479 (4)0.0416 (3)
S30.70965 (11)0.42116 (10)0.11404 (4)0.0434 (3)
S40.61473 (11)0.51916 (9)0.02945 (3)0.0414 (3)
S50.22266 (12)0.87810 (10)0.14501 (4)0.0425 (3)
S60.30258 (12)1.07940 (10)0.19239 (4)0.0463 (3)
S70.02210 (12)1.09168 (9)0.23814 (4)0.0413 (3)
S80.06917 (11)0.90355 (9)0.18638 (3)0.0376 (3)
C11.1229 (5)0.3756 (4)0.05168 (16)0.0531 (14)
C21.1914 (5)0.5763 (5)0.03410 (15)0.0612 (15)
C31.0602 (5)0.4602 (4)0.02280 (15)0.0521 (13)
C40.5998 (6)0.7046 (5)0.07693 (17)0.0632 (17)
C50.6824 (5)0.6222 (4)0.14889 (16)0.0583 (15)
C60.4492 (5)0.5602 (5)0.11754 (16)0.0666 (17)
C70.5117 (5)0.9168 (4)0.16823 (15)0.0513 (13)
C80.3729 (6)0.7714 (4)0.20949 (15)0.0533 (14)
C90.4340 (5)0.9398 (4)0.25218 (16)0.0561 (14)
C100.0930 (5)1.0443 (4)0.11620 (15)0.0564 (15)
C110.0016 (5)1.1998 (4)0.16003 (16)0.0530 (14)
C120.2357 (5)1.1221 (4)0.18135 (15)0.0509 (14)
C210.9519 (5)0.7426 (3)0.04054 (15)0.0595 (15)
H21A1.04200.75600.03270.071*
H21B0.89970.79890.02880.071*
C220.9411 (6)0.7454 (4)0.08884 (15)0.0635 (17)
H22A0.84980.73690.09640.076*
H22B0.96740.81420.09850.076*
C231.0183 (5)0.6664 (4)0.11395 (15)0.0554 (14)
H23A1.00260.67830.14450.066*
H23B1.11020.67940.10870.066*
C310.6108 (5)0.3124 (4)0.09543 (17)0.0590 (15)
H31A0.66750.26410.08030.071*
H31B0.57700.27650.12070.071*
C320.4959 (5)0.3380 (4)0.06570 (16)0.0618 (16)
H32A0.45110.27360.05870.074*
H32B0.43510.38170.08140.074*
C330.5323 (5)0.3929 (4)0.02356 (15)0.0549 (14)
H33A0.45330.40340.00680.066*
H33B0.58860.34710.00700.066*
C510.2710 (5)0.9530 (4)0.09738 (14)0.0581 (16)
H51A0.36120.93660.09070.070*
H51B0.21840.93030.07310.070*
C520.2581 (5)1.0704 (4)0.10154 (15)0.0610 (15)
H52A0.28231.10160.07410.073*
H52B0.16701.08690.10660.073*
C530.3386 (5)1.1211 (4)0.13688 (16)0.0601 (15)
H53A0.32611.19590.13520.072*
H53B0.42991.10720.13110.072*
C710.0791 (4)1.0318 (4)0.28009 (12)0.0501 (13)
H71A0.02290.99000.29840.060*
H71B0.11481.08710.29790.060*
C720.1902 (4)0.9643 (4)0.26522 (13)0.0462 (12)
H72A0.25151.00750.24940.055*
H72B0.23510.93780.29060.055*
C730.1534 (4)0.8733 (3)0.23698 (14)0.0472 (12)
H73A0.23240.83520.23000.057*
H73B0.09820.82710.25370.057*
C910.8475 (4)0.3835 (4)0.03267 (15)0.0481 (13)
C920.1597 (4)0.8936 (4)0.24367 (14)0.0435 (12)
O11.1711 (4)0.3008 (3)0.06250 (13)0.0823 (14)
O21.2807 (4)0.6289 (4)0.03471 (13)0.0925 (16)
O31.0733 (4)0.4380 (3)0.05810 (10)0.0705 (11)
O40.5945 (5)0.7865 (3)0.06323 (13)0.0987 (17)
O50.7256 (4)0.6517 (3)0.18024 (11)0.0864 (15)
O60.3438 (4)0.5517 (4)0.13040 (12)0.0974 (17)
O70.6055 (3)0.9183 (3)0.14762 (11)0.0738 (12)
O80.3816 (5)0.6846 (3)0.21508 (13)0.0889 (14)
O90.4785 (4)0.9553 (3)0.28507 (11)0.0871 (15)
O100.1054 (4)1.0259 (3)0.08036 (10)0.0889 (14)
O110.0512 (4)1.2781 (3)0.15233 (12)0.0840 (14)
O120.3387 (4)1.1547 (3)0.18505 (12)0.0740 (13)
O910.8444 (4)0.3005 (3)0.01739 (12)0.0741 (12)
O920.1563 (3)0.8449 (3)0.27565 (11)0.0635 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0352 (4)0.0464 (4)0.0385 (3)0.0028 (3)0.0006 (3)0.0037 (3)
Fe20.0332 (3)0.0332 (4)0.0323 (3)0.0016 (3)0.0031 (3)0.0013 (3)
Fe30.0407 (4)0.0513 (4)0.0345 (3)0.0075 (4)0.0042 (3)0.0054 (3)
Fe40.0354 (4)0.0387 (4)0.0441 (4)0.0018 (3)0.0002 (3)0.0029 (3)
Fe50.0325 (3)0.0334 (4)0.0351 (3)0.0030 (3)0.0006 (3)0.0001 (3)
Fe60.0416 (4)0.0383 (4)0.0364 (3)0.0038 (3)0.0007 (3)0.0005 (3)
S10.0433 (7)0.0418 (7)0.0338 (6)0.0068 (5)0.0075 (5)0.0024 (5)
S20.0483 (8)0.0385 (7)0.0380 (6)0.0040 (6)0.0090 (5)0.0068 (5)
S30.0407 (7)0.0484 (8)0.0410 (6)0.0056 (6)0.0036 (5)0.0082 (6)
S40.0405 (7)0.0478 (8)0.0359 (6)0.0011 (6)0.0081 (5)0.0030 (5)
S50.0394 (7)0.0469 (8)0.0411 (6)0.0073 (6)0.0033 (5)0.0071 (5)
S60.0440 (7)0.0348 (7)0.0602 (8)0.0082 (6)0.0065 (6)0.0024 (6)
S70.0463 (7)0.0380 (7)0.0397 (6)0.0006 (6)0.0011 (5)0.0070 (5)
S80.0366 (6)0.0348 (6)0.0414 (6)0.0041 (5)0.0013 (5)0.0050 (5)
C10.045 (3)0.063 (4)0.051 (3)0.000 (3)0.007 (2)0.002 (3)
C20.055 (3)0.085 (4)0.044 (3)0.012 (3)0.003 (3)0.017 (3)
C30.045 (3)0.059 (4)0.053 (3)0.001 (3)0.001 (2)0.006 (3)
C40.071 (4)0.066 (4)0.053 (3)0.021 (3)0.017 (3)0.015 (3)
C50.064 (4)0.065 (4)0.045 (3)0.006 (3)0.005 (3)0.002 (3)
C60.057 (4)0.097 (5)0.046 (3)0.019 (4)0.006 (3)0.013 (3)
C70.045 (3)0.056 (3)0.054 (3)0.004 (3)0.006 (2)0.005 (3)
C80.063 (4)0.045 (3)0.052 (3)0.001 (3)0.007 (3)0.000 (2)
C90.045 (3)0.070 (4)0.053 (3)0.002 (3)0.006 (2)0.008 (3)
C100.060 (4)0.059 (4)0.051 (3)0.010 (3)0.001 (3)0.008 (3)
C110.059 (4)0.048 (3)0.052 (3)0.006 (3)0.006 (3)0.002 (3)
C120.055 (4)0.047 (3)0.050 (3)0.004 (3)0.004 (3)0.007 (2)
C210.083 (4)0.039 (3)0.057 (3)0.003 (3)0.018 (3)0.005 (2)
C220.088 (5)0.035 (3)0.067 (4)0.002 (3)0.026 (3)0.005 (3)
C230.072 (4)0.044 (3)0.050 (3)0.012 (3)0.014 (3)0.001 (2)
C310.050 (3)0.053 (4)0.075 (4)0.013 (3)0.007 (3)0.014 (3)
C320.047 (4)0.072 (4)0.066 (4)0.021 (3)0.008 (3)0.005 (3)
C330.047 (3)0.063 (4)0.055 (3)0.014 (3)0.010 (2)0.017 (3)
C510.054 (3)0.084 (5)0.037 (3)0.007 (3)0.008 (2)0.001 (3)
C520.057 (4)0.074 (4)0.052 (3)0.007 (3)0.018 (3)0.018 (3)
C530.054 (4)0.046 (3)0.080 (4)0.007 (3)0.015 (3)0.018 (3)
C710.057 (3)0.057 (3)0.036 (2)0.003 (3)0.008 (2)0.007 (2)
C720.043 (3)0.051 (3)0.044 (3)0.004 (2)0.012 (2)0.002 (2)
C730.043 (3)0.048 (3)0.051 (3)0.004 (2)0.007 (2)0.003 (2)
C910.038 (3)0.052 (3)0.055 (3)0.001 (2)0.006 (2)0.006 (3)
C920.035 (3)0.048 (3)0.048 (3)0.001 (2)0.001 (2)0.000 (2)
O10.078 (3)0.078 (3)0.091 (3)0.036 (3)0.006 (2)0.020 (2)
O20.061 (3)0.122 (4)0.094 (3)0.044 (3)0.005 (2)0.033 (3)
O30.080 (3)0.085 (3)0.047 (2)0.005 (2)0.004 (2)0.011 (2)
O40.159 (5)0.052 (3)0.085 (3)0.039 (3)0.041 (3)0.003 (2)
O50.112 (4)0.099 (4)0.049 (2)0.017 (3)0.024 (2)0.019 (2)
O60.053 (3)0.168 (5)0.071 (3)0.011 (3)0.009 (2)0.010 (3)
O70.046 (2)0.100 (3)0.076 (3)0.009 (2)0.015 (2)0.011 (2)
O80.125 (4)0.046 (3)0.095 (3)0.011 (3)0.013 (3)0.009 (2)
O90.068 (3)0.138 (4)0.055 (2)0.015 (3)0.010 (2)0.023 (3)
O100.118 (4)0.109 (4)0.040 (2)0.014 (3)0.010 (2)0.003 (2)
O110.114 (4)0.049 (3)0.088 (3)0.007 (3)0.031 (3)0.011 (2)
O120.054 (3)0.087 (3)0.081 (3)0.020 (2)0.000 (2)0.004 (2)
O910.067 (3)0.053 (3)0.103 (3)0.007 (2)0.009 (2)0.037 (2)
O920.052 (2)0.079 (3)0.060 (2)0.005 (2)0.0071 (19)0.030 (2)
Geometric parameters (Å, º) top
Fe1—C21.791 (5)C3—O31.136 (5)
Fe1—C31.802 (5)C4—O41.135 (6)
Fe1—C11.823 (5)C5—O51.131 (5)
Fe1—S22.2724 (14)C6—O61.156 (6)
Fe1—S12.2743 (14)C7—O71.154 (5)
Fe1—Fe22.5596 (11)C8—O81.131 (5)
Fe2—C911.764 (5)C9—O91.132 (5)
Fe2—S42.2310 (13)C10—O101.140 (5)
Fe2—S32.2311 (13)C11—O111.152 (6)
Fe2—S12.2637 (13)C12—O121.142 (6)
Fe2—S22.2662 (13)C21—C221.498 (6)
Fe2—Fe32.5534 (10)C21—H21A0.9700
Fe3—C61.783 (6)C21—H21B0.9700
Fe3—C41.802 (6)C22—C231.503 (6)
Fe3—C51.806 (5)C22—H22A0.9700
Fe3—S32.2596 (15)C22—H22B0.9700
Fe3—S42.2648 (13)C23—H23A0.9700
Fe4—C71.790 (5)C23—H23B0.9700
Fe4—C81.812 (5)C31—C321.529 (6)
Fe4—C91.813 (5)C31—H31A0.9700
Fe4—S52.2692 (14)C31—H31B0.9700
Fe4—S62.2734 (15)C32—C331.528 (6)
Fe4—Fe52.5662 (11)C32—H32A0.9700
Fe5—C921.757 (4)C32—H32B0.9700
Fe5—S82.2310 (13)C33—H33A0.9700
Fe5—S72.2355 (13)C33—H33B0.9700
Fe5—S62.2693 (14)C51—C521.519 (6)
Fe5—S52.2731 (14)C51—H51A0.9700
Fe5—Fe62.5679 (10)C51—H51B0.9700
Fe6—C111.796 (5)C52—C531.516 (6)
Fe6—C121.799 (5)C52—H52A0.9700
Fe6—C101.801 (5)C52—H52B0.9700
Fe6—S72.2562 (14)C53—H53A0.9700
Fe6—S82.2604 (14)C53—H53B0.9700
S1—C231.814 (5)C71—C721.503 (6)
S2—C211.826 (4)C71—H71A0.9700
S3—C311.818 (5)C71—H71B0.9700
S4—C331.836 (4)C72—C731.506 (5)
S5—C511.827 (4)C72—H72A0.9700
S6—C531.835 (5)C72—H72B0.9700
S7—C711.830 (4)C73—H73A0.9700
S8—C731.829 (4)C73—H73B0.9700
C1—O11.131 (6)C91—O911.165 (5)
C2—O21.138 (6)C92—O921.170 (5)
C2—Fe1—C396.0 (2)C21—S2—Fe1107.53 (17)
C2—Fe1—C197.9 (2)Fe2—S2—Fe168.66 (4)
C3—Fe1—C192.8 (2)C31—S3—Fe2112.00 (17)
C2—Fe1—S298.35 (19)C31—S3—Fe3111.15 (17)
C3—Fe1—S289.15 (16)Fe2—S3—Fe369.30 (4)
C1—Fe1—S2163.32 (17)C33—S4—Fe2111.44 (16)
C2—Fe1—S196.21 (17)C33—S4—Fe3111.68 (16)
C3—Fe1—S1167.26 (16)Fe2—S4—Fe369.21 (4)
C1—Fe1—S189.23 (16)C51—S5—Fe4109.19 (17)
S2—Fe1—S185.34 (5)C51—S5—Fe5115.02 (18)
C2—Fe1—Fe2139.53 (19)Fe4—S5—Fe568.80 (4)
C3—Fe1—Fe2112.12 (16)C53—S6—Fe5114.44 (16)
C1—Fe1—Fe2108.69 (16)C53—S6—Fe4108.24 (17)
S2—Fe1—Fe255.56 (4)Fe5—S6—Fe468.79 (5)
S1—Fe1—Fe255.47 (3)C71—S7—Fe5111.96 (16)
C91—Fe2—S494.73 (16)C71—S7—Fe6111.03 (15)
C91—Fe2—S393.42 (16)Fe5—S7—Fe669.74 (4)
S4—Fe2—S386.62 (5)C73—S8—Fe5111.49 (16)
C91—Fe2—S1104.54 (16)C73—S8—Fe6111.43 (15)
S4—Fe2—S1160.62 (5)Fe5—S8—Fe669.74 (4)
S3—Fe2—S190.09 (5)O1—C1—Fe1178.7 (5)
C91—Fe2—S2102.08 (16)O2—C2—Fe1178.4 (6)
S4—Fe2—S292.37 (5)O3—C3—Fe1177.1 (5)
S3—Fe2—S2164.50 (6)O4—C4—Fe3178.4 (6)
S1—Fe2—S285.73 (5)O5—C5—Fe3179.7 (6)
C91—Fe2—Fe3135.28 (15)O6—C6—Fe3178.5 (5)
S4—Fe2—Fe356.02 (4)O7—C7—Fe4178.2 (5)
S3—Fe2—Fe355.88 (4)O8—C8—Fe4177.8 (6)
S1—Fe2—Fe3106.83 (4)O9—C9—Fe4178.0 (6)
S2—Fe2—Fe3111.23 (5)O10—C10—Fe6178.6 (5)
C91—Fe2—Fe168.35 (15)O11—C11—Fe6178.5 (6)
S4—Fe2—Fe1136.61 (4)O12—C12—Fe6176.2 (5)
S3—Fe2—Fe1132.14 (4)C22—C21—S2115.7 (3)
S1—Fe2—Fe155.86 (4)C22—C21—H21A108.3
S2—Fe2—Fe155.79 (4)S2—C21—H21A108.4
Fe3—Fe2—Fe1156.22 (4)C22—C21—H21B108.3
C6—Fe3—C498.7 (3)S2—C21—H21B108.3
C6—Fe3—C597.6 (2)H21A—C21—H21B107.4
C4—Fe3—C592.4 (2)C21—C22—C23117.4 (5)
C6—Fe3—S3104.7 (2)C21—C22—H22A108.0
C4—Fe3—S3156.6 (2)C23—C22—H22A108.0
C5—Fe3—S386.73 (17)C21—C22—H22B108.0
C6—Fe3—S4106.28 (17)C23—C22—H22B108.0
C4—Fe3—S486.26 (16)H22A—C22—H22B107.2
C5—Fe3—S4156.04 (18)C22—C23—S1117.0 (3)
S3—Fe3—S485.15 (5)C22—C23—H23A108.0
C6—Fe3—Fe2149.7 (2)S1—C23—H23A108.0
C4—Fe3—Fe2102.81 (19)C22—C23—H23B108.0
C5—Fe3—Fe2102.55 (17)S1—C23—H23B108.0
S3—Fe3—Fe254.82 (4)H23A—C23—H23B107.3
S4—Fe3—Fe254.77 (4)C32—C31—S3117.1 (4)
C7—Fe4—C895.7 (2)C32—C31—H31A108.0
C7—Fe4—C998.6 (2)S3—C31—H31A108.0
C8—Fe4—C992.1 (2)C32—C31—H31B108.0
C7—Fe4—S598.40 (16)S3—C31—H31B108.0
C8—Fe4—S588.53 (17)H31A—C31—H31B107.3
C9—Fe4—S5162.87 (16)C33—C32—C31115.0 (4)
C7—Fe4—S698.05 (18)C33—C32—H32A108.5
C8—Fe4—S6165.65 (19)C31—C32—H32A108.5
C9—Fe4—S689.92 (18)C33—C32—H32B108.5
S5—Fe4—S685.43 (5)C31—C32—H32B108.5
C7—Fe4—Fe5140.97 (16)H32A—C32—H32B107.5
C8—Fe4—Fe5110.52 (19)C32—C33—S4115.8 (3)
C9—Fe4—Fe5108.46 (16)C32—C33—H33A108.3
S5—Fe4—Fe555.67 (4)S4—C33—H33A108.3
S6—Fe4—Fe555.53 (4)C32—C33—H33B108.3
C92—Fe5—S894.36 (15)S4—C33—H33B108.3
C92—Fe5—S792.93 (16)H33A—C33—H33B107.4
S8—Fe5—S785.94 (5)C52—C51—S5115.5 (4)
C92—Fe5—S6105.36 (16)C52—C51—H51A108.4
S8—Fe5—S6160.16 (5)S5—C51—H51A108.4
S7—Fe5—S690.81 (5)C52—C51—H51B108.4
C92—Fe5—S5100.88 (16)S5—C51—H51B108.4
S8—Fe5—S593.09 (5)H51A—C51—H51B107.5
S7—Fe5—S5166.19 (5)C53—C52—C51116.1 (5)
S6—Fe5—S585.43 (5)C53—C52—H52A108.3
C92—Fe5—Fe468.29 (15)C51—C52—H52A108.3
S8—Fe5—Fe4137.38 (5)C53—C52—H52B108.3
S7—Fe5—Fe4131.59 (4)C51—C52—H52B108.3
S6—Fe5—Fe455.68 (4)H52A—C52—H52B107.4
S5—Fe5—Fe455.53 (4)C52—C53—S6116.1 (3)
C92—Fe5—Fe6134.41 (15)C52—C53—H53A108.3
S8—Fe5—Fe655.67 (4)S6—C53—H53A108.3
S7—Fe5—Fe655.51 (4)C52—C53—H53B108.3
S6—Fe5—Fe6106.85 (5)S6—C53—H53B108.3
S5—Fe5—Fe6113.00 (4)H53A—C53—H53B107.4
Fe4—Fe5—Fe6157.06 (3)C72—C71—S7117.1 (3)
C11—Fe6—C1297.9 (2)C72—C71—H71A108.0
C11—Fe6—C1092.6 (2)S7—C71—H71A108.0
C12—Fe6—C1096.4 (2)C72—C71—H71B108.0
C11—Fe6—S786.36 (17)S7—C71—H71B108.0
C12—Fe6—S7103.47 (16)H71A—C71—H71B107.3
C10—Fe6—S7160.10 (17)C71—C72—C73115.8 (4)
C11—Fe6—S8154.33 (17)C71—C72—H72A108.3
C12—Fe6—S8107.63 (17)C73—C72—H72A108.3
C10—Fe6—S887.73 (17)C71—C72—H72B108.3
S7—Fe6—S884.77 (5)C73—C72—H72B108.3
C11—Fe6—Fe5101.04 (17)H72A—C72—H72B107.4
C12—Fe6—Fe5149.66 (15)C72—C73—S8116.7 (3)
C10—Fe6—Fe5106.21 (16)C72—C73—H73A108.1
S7—Fe6—Fe554.75 (4)S8—C73—H73A108.1
S8—Fe6—Fe554.59 (4)C72—C73—H73B108.1
C23—S1—Fe2114.61 (16)S8—C73—H73B108.1
C23—S1—Fe1108.34 (17)H73A—C73—H73B107.3
Fe2—S1—Fe168.67 (4)O91—C91—Fe2165.4 (4)
C21—S2—Fe2115.47 (16)O92—C92—Fe5166.8 (4)

Experimental details

Crystal data
Chemical formula[Fe3(C3H6S2)2(CO)7]
Mr576.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.251 (3), 12.838 (4), 30.915 (9)
V3)4068 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerRigaku Saturn724+ CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.592, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
35336, 9231, 8082
Rint0.071
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.056, 0.86
No. of reflections9231
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.56
Absolute structureFlack (1983), 4075 Friedel pairs
Absolute structure parameter0.016 (13)

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

We thank NNSF of China (Nos. 21173219 and 21203195) and the NSF of Fujian Province (2011 J01063) for supporting this work.

References

First citationBest, S. P., Borg, S. J., White, J. M., Razavet, M. & Pickett, C. J. (2007). Chem. Commun. pp. 4348–4350.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, S., Hogarth, G., Holt, K. B., Kabir, S. E., Rahaman, A. & Unwin, D. G. (2011). Chem. Commun. 47, 11222–11224.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTard, C., Liu, X. M., Hughes, D. L. & Pickett, C. J. (2005). Chem. Commun. pp. 133–135.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinter, A., Zsolnai, L. & Huttner, G. (1982). Z. Naturforsch. Teil B, 37, 1430–1436.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds