organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o495-o496

An ortho­rhom­bic polymorph of N1,N4-di­phenyl-3,6-bis­­(phenyl­imino)­cyclo­hexa-1,4-diene-1,4-di­amine

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

(Received 5 March 2014; accepted 20 March 2014; online 29 March 2014)

A new ortho­rhom­bic polymorph of the title compound, C30H24N4, with a density of 1.315 Mg m−3, has been obtained. The mol­ecule is centrosymmetric with the centroid of the cyclo­hexa-1,4-diene ring located on an inversion center. The two unique benzene rings are almost perpendicular to each other [dihedral angle = 86.70 (6)°] and are oriented at dihedral angles of 30.79 (5) and 68.07 (5)° with respect to the central cyclo­hexa­diene ring. In the crystal, ππ stacking is observed between the central cyclo­hexa-1,4-diene-1,4-di­amine unit and a phenyl ring of a neighboring mol­ecule [centroid–centroid distance = 3.7043 (7) Å]. The crystal structure of the triclinic polymorph [Ohno et al. (2014[Ohno, K., Maruyama, H., Fujihara, T. & Nagasawa, A. (2014). Acta Cryst. E70, o303-o304.]). Acta Cryst. E70, o303–o304] showed chains running along the b-axis direction through weak C—H⋯π inter­actions.

Related literature

For general background to the title compound, see: Kimish (1875[Kimish, C. (1875). Ber. Dtsch Chem. Ges. 8, 1026-1032.]). For the triclinic polymorph of the title compound, see: Ohno et al. (2014[Ohno, K., Maruyama, H., Fujihara, T. & Nagasawa, A. (2014). Acta Cryst. E70, o303-o304.]). For related structures, see: Siri & Braunstein (2000[Siri, O. & Braunstein, P. (2000). Chem. Commun. pp. 2223-2224.]); Khramov et al. (2006[Khramov, D. M., Boydston, A. J. & Bielawski, C. W. (2006). Org. Lett. 8, 1831-1834.]); Boydston et al. (2006[Boydston, A. J., Khramoc, D. M. & Bielawski, C. W. (2006). Tetrahedron Lett. 47, 5123-5125.]); Huang et al. (2008[Huang, Y.-B., Tang, G.-R., Jin, G.-Y. & Jin, G.-X. (2008). Organometallics, 27, 259-269.]); Su et al. (2012[Su, Y., Zhao, Y., Gao, J., Dong, Q., Wu, B. & Yang, X.-J. (2012). Inorg. Chem. 51, 5889-5896.]). A calculation using Gaussian98 indicates that the triclinic form of the title compound is more stable, see: Frisch et al. (2001[Frisch, M. J., et al. (2001). GAUSSIAN98. Gaussian Inc., Pittsburgh, PA, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N4

  • Mr = 440.53

  • Orthorhombic, P b c a

  • a = 9.1927 (5) Å

  • b = 12.4711 (7) Å

  • c = 18.9806 (11) Å

  • V = 2176.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.35 × 0.30 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.97, Tmax = 0.99

  • 14830 measured reflections

  • 2591 independent reflections

  • 2193 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.133

  • S = 1.09

  • 2591 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N1,N4-Diphenyl-3,6-bis(phenylimino)cyclohexa-1,4-diene-1,4-diamine (I) was synthesized as early as in 1875 (Kimish, 1875) and called azophenine. Recently derivatives of I were prepared and these molecular structures were reported (Siri & Braunstein, 2000; Khramov et al., 2006; Boydston et al., 2006; Huang et al., 2008; Su et al., 2012). Previously, we reported the molecular structure of I in triclinic P-1 space group, which is obtained from an oxidation reaction of aniline in the presence of [VIV(O)(η2-ox)(H2O)3] (ox2- = oxalate) in a mixture of EtOH and H2O (Ohno et al., 2014).

We obtained the crystals of I in orthorhombic Pbca space group from a reaction with aniline and [VIV(O)(η2-ox)(H2O)3] and will report here its molecular and crystal structures. This crystal is a porymorph of the previously reported triclinic structure, which showed one-dimensional chains running along the b-axis direction through weak C—H···π interactions in the crystal.

The crystals contain only I. The main structural difference between the polymorphs of I lies in the orientation of phenyl rings (Figure 2). The neighboring phenyl rings in orthorhombic polymorph of I locate near perpendicular with each other, where the dihedral angle between C(4)—C(5)—C(6)—C(7)—C(8)—C(9) and C(10 A)—C(11 A)—C(12 A)—C(13 A)—C(14 A)—C(15 A) phenyl rings is 86.71°. On the other hand, the dihedral angles between neighboring phenyl rings in triclinic polymorph of I are 29.46 and 19.69° for between C(7)—C(8)—C(9)—C(10)—C(11)—C(12) and C(25)—C(26)—C(27)—C(28)—C(29)—C(30) phenyl rings and C(13)—C(14)—C(15)—C(16)— C(17)—C(18) and C(19)—C(20)—C(21)—C(22)—C(23)—C(24) ones, respectively.

Packing structure of the orthorhombic polymorph of I represented two-dimensional sheets through intermolecular ππ interaction, where the distances between the phenyl ring C(10)—C(11)—C(12)—C(13)—C(14)—C(15) and the central six-membered ring of adjacent molecule C(1)—C(2)—C(3)—C(1 A)—C(2 A)—C(3 A) is about 3.54 Å (the symmetry code: -x + 0.5, y - 0.5, z) and the dihedral angle between them is 10.70 (8)° (Figure 3).

Calculations using Gaussian98 (Frisch et al., 2001) with a B3LYP/6–31 G(d) set of parameters for polymorphs indicate that the triclinic form is more stable than the monoclinic form by approximately 10 kJ mol-1.

Related literature top

For general background to the title compound, see: Kimish (1875). For the triclinic polymorph of the title compound, see: Ohno et al. (2014). For related structures, see: Siri & Braunstein (2000); Khramov et al. (2006); Boydston et al. (2006); Huang et al. (2008); Su et al. (2012). A calculation using Gaussian98 indicates that the triclinic form of the title compound is more stable, see: Frisch et al. (2001).

Experimental top

The VIV complex [VIV(O)(η2-ox)(H2O)3] was purchased as "VO(ox).nH2O" from Wako Chemicals, and used without further purification. A solution of aniline (27.9 g, 300 mmol) in EtOH (50 cm3) was added to a solution of VO(ox).nH2O (1.13 g, 3.00 mmol) in a mixture of EtOH (50 cm3) and H2O (100 cm3). The reaction mixture was set aside for 2 weeks at room temperature in air. The precipitated crystals of I were filtered off, washed with H2O and EtOH, successively, and dried. Yield 1.34 g. (5.1%). 1H NMR / CDCl3: δ 8.22 (s, 2H, NH), 7.41–6.88 (m, 20H, PhH), 6.21 (s, 2H, CH). MALDI TOF MS: 441 (M+1). UV-vis / CH2Cl2, λ/nm (ε/M-1cm-1): 290 (46000), 379 (30000).

Refinement top

The H atoms of NH moiety was located from a Fourier difference map and refined isotropically. Other H atoms were placed at idealized positions with C—H = 0.95 Å, and refined in riding mode with Ueq(H) = 1.2Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure in the orthorhombic polymorph of I, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A superposition of the molecular structures of the orthorhombic polymorph of I (colour: black) and the triclinic one (colour: orange).
[Figure 3] Fig. 3. The packing structure through intermolecular ππ interaction in the orthorhombic polymorph of I.
N1,N4-Diphenyl-3,6-bis(phenylimino)cyclohexa-1,4-diene-1,4-diamine top
Crystal data top
C30H24N4F(000) = 928
Mr = 440.53Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6200 reflections
a = 9.1927 (5) Åθ = 3.0–27.8°
b = 12.4711 (7) ŵ = 0.08 mm1
c = 18.9806 (11) ÅT = 173 K
V = 2176.0 (2) Å3Plate, orange
Z = 40.35 × 0.30 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2591 independent reflections
Radiation source: fine-focus sealed tube2193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
Detector resolution: 8.366 pixels mm-1θmax = 27.9°, θmin = 2.2°
ϕ and ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1615
Tmin = 0.97, Tmax = 0.99l = 1624
14830 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.073P)2 + 0.1882P]
where P = (Fo2 + 2Fc2)/3
2591 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C30H24N4V = 2176.0 (2) Å3
Mr = 440.53Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 9.1927 (5) ŵ = 0.08 mm1
b = 12.4711 (7) ÅT = 173 K
c = 18.9806 (11) Å0.35 × 0.30 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2591 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2193 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.116
14830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
2591 reflectionsΔρmin = 0.24 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 4.5932 (0.0050) x + 6.9089 (0.0064) y + 12.6394 (0.0086) z = 6.3197 (0.0043)

* 0.0005 (0.0006) C1 * -0.0005 (0.0006) C2 * 0.0005 (0.0006) C3 * -0.0005 (0.0006) C1_$1 * 0.0005 (0.0006) C2_$1 * -0.0005 (0.0006) C3_$1

Rms deviation of fitted atoms = 0.0005

- 5.6034 (0.0038) x + 5.0416 (0.0058) y + 12.9434 (0.0070) z = 2.9266 (0.0041)

Angle to previous plane (with approximate e.s.d.) = 10.70 (0.08)

* 0.0006 (0.0008) C10_$2 * -0.0066 (0.0008) C11_$2 * 0.0067 (0.0009) C12_$2 * -0.0008 (0.0009) C13_$2 * -0.0053 (0.0009) C14_$2 * 0.0053 (0.0008) C15_$2

Rms deviation of fitted atoms = 0.0049

- 4.5932 (0.0050) x + 6.9089 (0.0064) y + 12.6394 (0.0086) z = 6.3197 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 10.70 (0.08)

* 0.0005 (0.0006) C1 * -0.0005 (0.0006) C2 * 0.0005 (0.0006) C3 * -0.0005 (0.0006) C1_$1 * 0.0005 (0.0006) C2_$1 * -0.0005 (0.0006) C3_$1 - 3.7228 (0.0017) C10_$2 - 3.4796 (0.0019) C11_$2 - 3.2849 (0.0018) C12_$2

Rms deviation of fitted atoms = 0.0005

- 4.5932 (0.0050) x + 6.9089 (0.0064) y + 12.6394 (0.0086) z = 6.3197 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 0.00 (0.10)

* 0.0005 (0.0006) C1 * -0.0005 (0.0006) C2 * 0.0005 (0.0006) C3 * -0.0005 (0.0006) C1_$1 * 0.0005 (0.0006) C2_$1 * -0.0005 (0.0006) C3_$1 - 3.3572 (0.0015) C13_$2 - 3.6100 (0.0013) C14_$2 - 3.7830 (0.0014) C15_$2

Rms deviation of fitted atoms = 0.0005

- 7.4963 (0.0028) x + 1.7481 (0.0065) y + 10.6592 (0.0082) z = 4.5261 (0.0067)

Angle to previous plane (with approximate e.s.d.) = 30.79 (0.06)

* 0.0118 (0.0008) C4 * -0.0134 (0.0008) C5 * 0.0021 (0.0009) C6 * 0.0111 (0.0009) C7 * -0.0128 (0.0009) C8 * 0.0013 (0.0009) C9

Rms deviation of fitted atoms = 0.0101

5.6034 (0.0038) x + 5.0416 (0.0058) y + 12.9434 (0.0071) z = 8.2491 (0.0021)

Angle to previous plane (with approximate e.s.d.) = 86.71 (0.03)

* 0.0006 (0.0008) C10 * -0.0066 (0.0008) C11 * 0.0067 (0.0009) C12 * -0.0008 (0.0009) C13 * -0.0053 (0.0009) C14 * 0.0053 (0.0008) C15

Rms deviation of fitted atoms = 0.004

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12006 (12)0.00788 (8)0.54798 (6)0.0209 (3)
C20.10916 (12)0.08101 (8)0.49535 (6)0.0206 (3)
C30.01449 (12)0.08355 (9)0.44911 (6)0.0215 (3)
H30.02240.13980.41560.026*
C40.29282 (12)0.06850 (9)0.64289 (6)0.0219 (3)
C50.27035 (13)0.17924 (10)0.64288 (6)0.0256 (3)
H50.21480.21190.60650.031*
C60.32978 (14)0.24128 (10)0.69630 (7)0.0301 (3)
H60.31230.31640.69680.036*
C70.41411 (15)0.19588 (10)0.74902 (6)0.0321 (3)
H70.45310.23920.78560.039*
C80.44080 (15)0.08662 (10)0.74762 (6)0.0314 (3)
H80.50130.05510.78250.038*
C90.37968 (13)0.02321 (9)0.69556 (6)0.0264 (3)
H90.39690.05190.69560.032*
C100.21200 (12)0.24083 (9)0.45179 (6)0.0223 (3)
C110.11033 (13)0.32190 (10)0.46367 (6)0.0262 (3)
H110.03660.31240.49820.031*
C120.11658 (14)0.41614 (9)0.42529 (7)0.0280 (3)
H120.04830.47170.43430.034*
C130.22200 (14)0.43007 (10)0.37364 (7)0.0288 (3)
H130.22540.49450.34690.035*
C140.32205 (14)0.34921 (10)0.36147 (7)0.0291 (3)
H140.39400.35820.32600.035*
C150.31853 (13)0.25534 (9)0.40038 (6)0.0254 (3)
H150.38870.20080.39210.031*
H10.2849 (18)0.0610 (13)0.5831 (8)0.030 (4)*
N10.23876 (11)0.00087 (8)0.59090 (5)0.0248 (2)
N20.21592 (10)0.14848 (8)0.49516 (5)0.0236 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (5)0.0226 (5)0.0223 (5)0.0024 (4)0.0001 (4)0.0009 (4)
C20.0181 (5)0.0207 (5)0.0231 (5)0.0007 (4)0.0008 (4)0.0010 (4)
C30.0197 (5)0.0220 (5)0.0229 (5)0.0005 (4)0.0010 (4)0.0020 (4)
C40.0160 (5)0.0264 (6)0.0234 (5)0.0013 (4)0.0005 (4)0.0022 (4)
C50.0198 (6)0.0265 (6)0.0305 (6)0.0003 (4)0.0015 (4)0.0008 (4)
C60.0243 (6)0.0266 (6)0.0393 (7)0.0012 (5)0.0003 (5)0.0055 (5)
C70.0288 (7)0.0374 (7)0.0302 (6)0.0062 (5)0.0025 (5)0.0084 (5)
C80.0267 (7)0.0395 (7)0.0279 (6)0.0026 (5)0.0061 (5)0.0014 (5)
C90.0233 (6)0.0267 (6)0.0291 (6)0.0007 (4)0.0032 (4)0.0007 (4)
C100.0183 (5)0.0222 (5)0.0264 (6)0.0041 (4)0.0045 (4)0.0007 (4)
C110.0201 (6)0.0287 (6)0.0297 (6)0.0013 (4)0.0015 (4)0.0006 (4)
C120.0225 (6)0.0250 (6)0.0364 (7)0.0025 (4)0.0017 (5)0.0001 (5)
C130.0282 (6)0.0251 (6)0.0330 (6)0.0032 (5)0.0028 (5)0.0064 (5)
C140.0244 (6)0.0326 (6)0.0301 (6)0.0035 (5)0.0032 (5)0.0038 (5)
C150.0202 (6)0.0264 (6)0.0296 (6)0.0006 (4)0.0014 (4)0.0002 (4)
N10.0217 (5)0.0237 (5)0.0290 (5)0.0051 (4)0.0059 (4)0.0044 (4)
N20.0194 (5)0.0227 (5)0.0286 (5)0.0017 (4)0.0019 (4)0.0021 (4)
Geometric parameters (Å, º) top
C1—C3i1.3547 (16)C8—C91.3847 (17)
C1—N11.3662 (15)C8—H80.9500
C1—C21.4957 (15)C9—H90.9500
C2—N21.2927 (14)C10—C151.3942 (17)
C2—C31.4365 (15)C10—C111.3952 (17)
C3—C1i1.3547 (16)C10—N21.4160 (14)
C3—H30.9500C11—C121.3840 (17)
C4—C51.3964 (16)C11—H110.9500
C4—C91.3985 (16)C12—C131.3893 (18)
C4—N11.4032 (15)C12—H120.9500
C5—C61.3874 (17)C13—C141.3842 (18)
C5—H50.9500C13—H130.9500
C6—C71.3866 (19)C14—C151.3846 (16)
C6—H60.9500C14—H140.9500
C7—C81.3848 (19)C15—H150.9500
C7—H70.9500N1—H10.874 (17)
C3i—C1—N1127.12 (10)C8—C9—H9119.6
C3i—C1—C2119.71 (10)C4—C9—H9119.6
N1—C1—C2113.12 (10)C15—C10—C11119.31 (10)
N2—C2—C3125.78 (10)C15—C10—N2119.63 (10)
N2—C2—C1115.69 (10)C11—C10—N2120.83 (10)
C3—C2—C1118.51 (10)C12—C11—C10120.17 (11)
C1i—C3—C2121.78 (10)C12—C11—H11119.9
C1i—C3—H3119.1C10—C11—H11119.9
C2—C3—H3119.1C11—C12—C13120.44 (11)
C5—C4—C9118.94 (10)C11—C12—H12119.8
C5—C4—N1123.87 (10)C13—C12—H12119.8
C9—C4—N1117.12 (10)C14—C13—C12119.34 (11)
C6—C5—C4119.55 (11)C14—C13—H13120.3
C6—C5—H5120.2C12—C13—H13120.3
C4—C5—H5120.2C13—C14—C15120.76 (11)
C7—C6—C5121.32 (11)C13—C14—H14119.6
C7—C6—H6119.3C15—C14—H14119.6
C5—C6—H6119.3C14—C15—C10119.96 (11)
C8—C7—C6119.14 (11)C14—C15—H15120.0
C8—C7—H7120.4C10—C15—H15120.0
C6—C7—H7120.4C1—N1—C4130.77 (10)
C9—C8—C7120.25 (12)C1—N1—H1110.7 (10)
C9—C8—H8119.9C4—N1—H1118.5 (10)
C7—C8—H8119.9C2—N2—C10120.77 (10)
C8—C9—C4120.74 (11)
C3i—C1—C2—N2178.63 (10)N2—C10—C11—C12173.81 (11)
N1—C1—C2—N23.91 (14)C10—C11—C12—C131.35 (18)
C3i—C1—C2—C30.14 (17)C11—C12—C13—C140.79 (19)
N1—C1—C2—C3177.31 (10)C12—C13—C14—C150.37 (19)
N2—C2—C3—C1i178.50 (11)C13—C14—C15—C100.95 (18)
C1—C2—C3—C1i0.14 (17)C11—C10—C15—C140.38 (17)
C9—C4—C5—C62.39 (17)N2—C10—C15—C14175.02 (10)
N1—C4—C5—C6179.27 (11)C3i—C1—N1—C47.7 (2)
C4—C5—C6—C71.51 (18)C2—C1—N1—C4175.09 (11)
C5—C6—C7—C80.8 (2)C5—C4—N1—C126.84 (19)
C6—C7—C8—C92.2 (2)C9—C4—N1—C1156.22 (12)
C7—C8—C9—C41.33 (19)C3—C2—N2—C106.60 (17)
C5—C4—C9—C81.00 (18)C1—C2—N2—C10174.73 (9)
N1—C4—C9—C8178.09 (11)C15—C10—N2—C2119.41 (12)
C15—C10—C11—C120.76 (17)C11—C10—N2—C266.04 (14)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC30H24N4
Mr440.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)9.1927 (5), 12.4711 (7), 18.9806 (11)
V3)2176.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
14830, 2591, 2193
Rint0.116
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.09
No. of reflections2591
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This work was supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

References

First citationBoydston, A. J., Khramoc, D. M. & Bielawski, C. W. (2006). Tetrahedron Lett. 47, 5123–5125.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2001). GAUSSIAN98. Gaussian Inc., Pittsburgh, PA, USA.  Google Scholar
First citationHuang, Y.-B., Tang, G.-R., Jin, G.-Y. & Jin, G.-X. (2008). Organometallics, 27, 259–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhramov, D. M., Boydston, A. J. & Bielawski, C. W. (2006). Org. Lett. 8, 1831–1834.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKimish, C. (1875). Ber. Dtsch Chem. Ges. 8, 1026–1032.  Google Scholar
First citationOhno, K., Maruyama, H., Fujihara, T. & Nagasawa, A. (2014). Acta Cryst. E70, o303–o304.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiri, O. & Braunstein, P. (2000). Chem. Commun. pp. 2223–2224.  Web of Science CSD CrossRef Google Scholar
First citationSu, Y., Zhao, Y., Gao, J., Dong, Q., Wu, B. & Yang, X.-J. (2012). Inorg. Chem. 51, 5889–5896.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o495-o496
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds