organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Dioxopyrrolidin-1-yl 2-methyl­prop-2-enoate

aChemistry Department, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21401, USA, and bDepartment of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
*Correspondence e-mail: wpearson@usna.edu

(Received 24 January 2014; accepted 6 March 2014; online 15 March 2014)

In the title compound, C8H9NO4, the pyrrolidine ring (r.m.s. deviation 0.014 Å) is almost normal to the mean plane of the propenoate group (r.m.s deviation 0.028 Å), making a dihedral angle of 86.58 (4)°. In the crystal, mol­ecules are linked via pairs of weak C—H⋯O hydrogen bonds, forming inversion dimers which stack along the c axis.

Related literature

For synthetic procedures, see: Batz et al. (1972[Batz, H., Franzmann, G. & Ringsdorf, H. (1972). Angew. Chem. Int. Ed. Engl. 11, 1103-1104.]); Rathfon & Tew (2008[Rathfon, J. M. & Tew, G. N. (2008). Polymer, 49, 1761-1769.]). For free radical polymerization and controlled free radical (ATRP) polymerizations to form homo- and copolymers, see: Batz et al. (1972[Batz, H., Franzmann, G. & Ringsdorf, H. (1972). Angew. Chem. Int. Ed. Engl. 11, 1103-1104.]); Rathfon & Tew (2008[Rathfon, J. M. & Tew, G. N. (2008). Polymer, 49, 1761-1769.]). For a background on post-polymerization modification to create functional polymers, see: Gauthier et al. (2009[Gauthier, M. A., Gibson, M. I. & Klok, H. A. (2009). Angew. Chem. Int. Ed. 48, 48-58.]). For a review of topochemical polymerization in crystals, see: Matsumoto (2003[Matsumoto, A. (2003). Polym. J. 35(2), 93-121.]). For a disscussion addressing the conformation of methyl substituents on alkenes, see: Deslongchamps & Deslongchamps (2011[Deslongchamps, G. & Deslongchamps, P. (2011). Org. Biomol. Chem. 9, 5321-5333.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO4

  • Mr = 183.16

  • Monoclinic, P 21 /c

  • a = 9.6137 (8) Å

  • b = 10.9317 (9) Å

  • c = 8.4911 (7) Å

  • β = 102.522 (2)°

  • V = 871.14 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.24 × 0.14 × 0.07 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 1.000

  • 20817 measured reflections

  • 1595 independent reflections

  • 1353 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.06

  • 1595 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.98 2.54 3.393 (2) 145
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is a monomer for free radical polymerization (Batz et al., 1972) and controlled free radical (ATRP) polymerizations (Rathfon & Tew, 2008) to form homo- and copolymers. After preliminary polymerization, these polymers serve as candidates to undergo post-polymerization modification to create functional polymers (Gauthier et al., 2009). A structure determination was undertaken to investigate the possibility of free radical, topochemical polymerization of this monomer while being exposed to X-ray radiation (Matsumoto, 2003). The molecular unit is shown in Figure 1. The crystal structure reveals that no polymerization has taken place. The asymmetric unit consists of a single monomer unit packed into a monoclinic cell with a volume of 871 Å3. While analysis of the intermolecular contacts within the unit cell reveals a close contact of 3.487 Å between the carbons of adjacent double bonds (C6 and C8), this contact occurs between a pair of adjacent molecules but is not maintained with additional molecules in order to achieve a favorable pathway for polymerization. Figure 2 shows the packing in the unit cell. The molecule is composed of two planar regions. Least-squares planar analysis reveals r.m.s. deviation from planarity for the pyrrolidine ring of 0.014 Å and 0.028 Å for the propenoate portion. The two planes are essentially normal to each other with an angle of 86.58 (4) degrees between least-squares planes. The conformation of the methyl H atoms is found to be syn to the vinylic proton. This is the preferred configuration by approximately 2 kcal/mol (Deslongchamps & Deslongchamps, 2011).

Related literature top

For synthetic procedures, see: Batz et al. (1972); Rathfon & Tew (2008). For free radical polymerization and controlled free radical (ATRP) polymerizations to form homo- and copolymers, see: Batz et al. (1972); Rathfon & Tew (2008). For a background on post-polymerization modification to create functional polymers, see: Gauthier et al. (2009). For a review of topochemical polymerization in crystals, see: Matsumoto (2003). For a disscussion addressing the conformation of methyl substituents on alkenes, see: Deslongchamps & Deslongchamps (2011).

Experimental top

Crystals of the title compound, C8H9NO4, were grown unintentionally from slow evaporation of a solution of the compound in 1:4 ethyl acetate:hexanes at 0 °C.

Refinement top

Although all of the H-atoms were located in difference maps, H-atoms were placed at idealized positions and refined with a riding model having Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms
[Figure 2] Fig. 2. Unit cell view along the +a axis showing the lack of proper stacking for polymerization to occur.
2,5-Dioxopyrrolidin-1-yl 2-methylprop-2-enoate top
Crystal data top
C8H9NO4F(000) = 384
Mr = 183.16Dx = 1.397 Mg m3
Dm = 1.337 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6137 (8) ÅCell parameters from 8309 reflections
b = 10.9317 (9) Åθ = 2.2–25.3°
c = 8.4911 (7) ŵ = 0.11 mm1
β = 102.522 (2)°T = 173 K
V = 871.14 (12) Å3Parallelpiped, colourless
Z = 40.24 × 0.14 × 0.07 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
1595 independent reflections
Radiation source: a micro-focus source with X-ray optics for beam focussing and collimation1353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 512 pixels mm-1θmax = 25.3°, θmin = 2.2°
combination of ω and phi scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1313
Tmin = 0.884, Tmax = 1.000l = 1010
20817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.472P]
where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H9NO4V = 871.14 (12) Å3
Mr = 183.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6137 (8) ŵ = 0.11 mm1
b = 10.9317 (9) ÅT = 173 K
c = 8.4911 (7) Å0.24 × 0.14 × 0.07 mm
β = 102.522 (2)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
1595 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1353 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1.000Rint = 0.042
20817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
1595 reflectionsΔρmin = 0.17 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

CheckCIF detected one Alert level C stating that a large K value of 2.279 was detected in the Analysis of Variance. Examination of the SHELX output does reveal one large K value (1.967) for the Fc/Fc(max of 0.000). Examination of the K values as a function of resolution shows no large K values from inf to 0.83 Å. Our conclusion is that the large K value results from very weak relections in the 0.80 - 0.60 A region and should have a neglibile effect upon the final structural results while the inclusion of the data would minimize termination effects in the calculation of electron density.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82074 (17)0.05447 (15)0.09507 (19)0.0323 (4)
H1A0.83760.02870.01100.039*
H1B0.78950.01760.14900.039*
C20.95609 (18)0.10915 (15)0.19895 (19)0.0326 (4)
H2A0.98940.05940.29730.039*
H2B1.03290.11260.13800.039*
C30.91646 (17)0.23566 (15)0.24251 (18)0.0301 (4)
C40.71008 (17)0.15357 (14)0.07441 (18)0.0283 (4)
C50.72829 (16)0.44523 (14)0.06764 (17)0.0261 (3)
C60.66346 (16)0.56484 (14)0.09024 (18)0.0270 (4)
C70.6865 (2)0.66054 (16)0.0276 (2)0.0420 (4)
H7A0.64350.73770.00370.063*
H7B0.64220.63420.13730.063*
H7C0.78900.67230.01880.063*
C80.59118 (17)0.58160 (15)0.20439 (19)0.0324 (4)
H8A0.58000.51600.27400.039*
H8B0.55040.65920.21680.039*
N10.77548 (14)0.25062 (11)0.16597 (15)0.0289 (3)
O10.98688 (13)0.31280 (11)0.32386 (15)0.0441 (3)
O20.58963 (13)0.15423 (11)0.00275 (15)0.0408 (3)
O30.70452 (12)0.35922 (9)0.17939 (13)0.0319 (3)
O40.79410 (13)0.42090 (11)0.03174 (14)0.0402 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (10)0.0246 (8)0.0283 (8)0.0082 (7)0.0076 (7)0.0019 (7)
C20.0377 (9)0.0288 (9)0.0328 (8)0.0099 (7)0.0108 (7)0.0026 (7)
C30.0382 (9)0.0269 (9)0.0264 (8)0.0032 (7)0.0097 (7)0.0037 (7)
C40.0385 (9)0.0254 (8)0.0234 (7)0.0048 (7)0.0118 (7)0.0025 (6)
C50.0296 (8)0.0246 (8)0.0225 (7)0.0025 (6)0.0021 (6)0.0002 (6)
C60.0273 (8)0.0210 (8)0.0281 (8)0.0019 (6)0.0042 (6)0.0022 (6)
C70.0430 (10)0.0295 (9)0.0516 (11)0.0068 (8)0.0064 (8)0.0112 (8)
C80.0356 (9)0.0258 (8)0.0321 (8)0.0068 (7)0.0009 (7)0.0079 (7)
N10.0389 (8)0.0183 (7)0.0296 (7)0.0104 (5)0.0078 (6)0.0001 (5)
O10.0487 (8)0.0335 (7)0.0470 (7)0.0019 (6)0.0033 (6)0.0072 (6)
O20.0366 (7)0.0415 (7)0.0429 (7)0.0065 (5)0.0053 (6)0.0038 (6)
O30.0460 (7)0.0209 (6)0.0323 (6)0.0125 (5)0.0164 (5)0.0030 (5)
O40.0551 (8)0.0342 (7)0.0370 (7)0.0107 (6)0.0226 (6)0.0050 (5)
Geometric parameters (Å, º) top
C1—C41.502 (2)C5—O41.1894 (18)
C1—C21.527 (2)C5—O31.3895 (18)
C1—H1A0.9900C5—C61.479 (2)
C1—H1B0.9900C6—C81.322 (2)
C2—C31.502 (2)C6—C71.497 (2)
C2—H2A0.9900C7—H7A0.9800
C2—H2B0.9900C7—H7B0.9800
C3—O11.202 (2)C7—H7C0.9800
C3—N11.380 (2)C8—H8A0.9500
C4—O21.2005 (19)C8—H8B0.9500
C4—N11.383 (2)N1—O31.3862 (15)
C4—C1—C2106.17 (13)O4—C5—C6126.43 (14)
C4—C1—H1A110.5O3—C5—C6111.92 (12)
C2—C1—H1A110.5C8—C6—C5121.40 (15)
C4—C1—H1B110.5C8—C6—C7124.80 (15)
C2—C1—H1B110.5C5—C6—C7113.80 (14)
H1A—C1—H1B108.7C6—C7—H7A109.5
C3—C2—C1105.84 (13)C6—C7—H7B109.5
C3—C2—H2A110.6H7A—C7—H7B109.5
C1—C2—H2A110.6C6—C7—H7C109.5
C3—C2—H2B110.6H7A—C7—H7C109.5
C1—C2—H2B110.6H7B—C7—H7C109.5
H2A—C2—H2B108.7C6—C8—H8A120.0
O1—C3—N1124.12 (15)C6—C8—H8B120.0
O1—C3—C2130.27 (15)H8A—C8—H8B120.0
N1—C3—C2105.60 (13)C3—N1—C4117.01 (13)
O2—C4—N1124.70 (14)C3—N1—O3120.89 (13)
O2—C4—C1130.03 (15)C4—N1—O3122.09 (13)
N1—C4—C1105.28 (13)N1—O3—C5111.51 (11)
O4—C5—O3121.65 (14)
C4—C1—C2—C33.14 (16)O1—C3—N1—O30.2 (2)
C1—C2—C3—O1179.04 (17)C2—C3—N1—O3179.34 (12)
C1—C2—C3—N11.86 (16)O2—C4—N1—C3177.73 (15)
C2—C1—C4—O2176.76 (16)C1—C4—N1—C32.28 (18)
C2—C1—C4—N13.24 (16)O2—C4—N1—O31.3 (2)
O4—C5—C6—C8179.43 (16)C1—C4—N1—O3178.65 (12)
O3—C5—C6—C80.8 (2)C3—N1—O3—C584.50 (16)
O4—C5—C6—C70.1 (2)C4—N1—O3—C594.54 (16)
O3—C5—C6—C7179.94 (13)O4—C5—O3—N14.8 (2)
O1—C3—N1—C4178.91 (15)C6—C5—O3—N1175.03 (11)
C2—C3—N1—C40.25 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.982.543.393 (2)145
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.982.543.393 (2)145
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

WHP and SL thank Joseph Urban for his assistance in inter­preting the conformational nature of the methyl H atoms in this structure. SL thanks NSF CHE1110911 for sabbatical support through the ROA program. LI thanks the NSF (grant No. CHE-1110911) for financial support.

References

First citationBatz, H., Franzmann, G. & Ringsdorf, H. (1972). Angew. Chem. Int. Ed. Engl. 11, 1103–1104.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeslongchamps, G. & Deslongchamps, P. (2011). Org. Biomol. Chem. 9, 5321–5333.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGauthier, M. A., Gibson, M. I. & Klok, H. A. (2009). Angew. Chem. Int. Ed. 48, 48–58.  Web of Science CrossRef CAS Google Scholar
First citationMatsumoto, A. (2003). Polym. J. 35(2), 93–121.  Web of Science CrossRef Google Scholar
First citationRathfon, J. M. & Tew, G. N. (2008). Polymer, 49, 1761–1769.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds