organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-3-(2-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 March 2014; accepted 18 March 2014; online 22 March 2014)

In the title compound, C21H21FO3S, the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean planes of the benzo­furan ring system and the fluoro­phenyl ring is 87.61 (3)°. In the crystal, mol­ecules related by inversion are linked into dimers via pairs of C—H⋯π inter­actions. These dimers are further linked by ππ inter­actions between the furan rings of neighbouring mol­ecules [centroid–centroid distance = 3.407 (2) Å and between the 2-fluoro­phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.742 (2) Å], resulting in a three-dimensional supra­molecular network.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1068.], 2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o324.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21FO3S

  • Mr = 372.44

  • Triclinic, [P \overline 1]

  • a = 9.0481 (2) Å

  • b = 10.5301 (2) Å

  • c = 10.6312 (2) Å

  • α = 106.025 (1)°

  • β = 92.561 (1)°

  • γ = 110.852 (1)°

  • V = 898.19 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.32 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.683, Tmax = 0.746

  • 16579 measured reflections

  • 4423 independent reflections

  • 3920 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.04

  • 4423 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg2i 0.99 2.73 3.644 (2) 154
C15—H15BCg2ii 0.98 2.80 3.454 (2) 125
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 4-methylphenylsulfonyl (Choi et al., 2012) and 2-bromophenylsulfonyl (Choi et al., 2014) substituents in the 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran ring system is essentially planar, with a mean deviation of 0.020 (1) Å from the least-squares plane defined by the nine constituent atoms. The 2-fluorophenyl ring is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the six constituent atoms. The cyclohexyl ring has a chair conformation. The dihedral angle formed by the benzofuran ring system and the 2-fluorophenyl ring is 87.61 (3)°.

In the crystal structure (Fig. 2), molecules related by inversion are paired into dimers via C—H···π interactions (Table 1, Cg2 is the centroid of the C2–C7 benzene ring). These dimers are further linked by ππ interactions; the first one between the furan rings of neighbouring molecules, with a Cg1···Cg1ii distance of 3.407 (2) Å and an interplanar distance of 3.353 (2) Å resulting in a slippage of 0.604 (2) Å (Cg1 is the centroid of the C1/C2/C7/O1/C8 furan ring), and the second one between the 2-fluorophenyl rings of neighbouring molecules, with a Cg3···Cg3iii distance of 3.742 (2) Å and an interplanar distance of 3.321 (2) Å resulting in a slippage of 1.724 (2) Å (Cg3 is the centroid of the C16–C21 2-fluorophenyl ring), forming a three-dimensional supramolecular network.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2012, 2014).

Experimental top

3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-3-(2-fluorophenylsulfanyl)-2-methyl-1-benzofuran (306 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colorless solid [yield 73%, m.p. 437–438 K; Rf = 0.53 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x, - y, - z + 1; (ii) - x + 1, - y + 1, - z + 1; (iii) - x, - y + 1, - z + 2.]
5-Cyclohexyl-3-(2-fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C21H21FO3SZ = 2
Mr = 372.44F(000) = 392
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Melting point = 437–438 K
a = 9.0481 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5301 (2) ÅCell parameters from 3275 reflections
c = 10.6312 (2) Åθ = 2.6–28.0°
α = 106.025 (1)°µ = 0.21 mm1
β = 92.561 (1)°T = 173 K
γ = 110.852 (1)°Block, colourless
V = 898.19 (3) Å30.32 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4423 independent reflections
Radiation source: rotating anode3920 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 2.0°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1412
Tmin = 0.683, Tmax = 0.746l = 1413
16579 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.3871P]
where P = (Fo2 + 2Fc2)/3
4423 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C21H21FO3Sγ = 110.852 (1)°
Mr = 372.44V = 898.19 (3) Å3
Triclinic, P1Z = 2
a = 9.0481 (2) ÅMo Kα radiation
b = 10.5301 (2) ŵ = 0.21 mm1
c = 10.6312 (2) ÅT = 173 K
α = 106.025 (1)°0.32 × 0.18 × 0.15 mm
β = 92.561 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3920 reflections with I > 2σ(I)
Tmin = 0.683, Tmax = 0.746Rint = 0.024
16579 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4423 reflectionsΔρmin = 0.37 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23801 (4)0.57051 (4)0.70681 (3)0.02569 (11)
F10.28674 (11)0.45682 (12)0.92462 (9)0.0410 (2)
O10.53546 (11)0.38158 (11)0.59971 (10)0.0263 (2)
O20.15677 (13)0.59421 (12)0.60205 (11)0.0343 (2)
O30.34140 (14)0.69153 (11)0.81440 (11)0.0354 (3)
C10.34106 (16)0.46540 (14)0.63767 (13)0.0233 (3)
C20.27505 (16)0.33440 (14)0.52683 (13)0.0225 (3)
C30.12613 (16)0.25272 (14)0.44701 (14)0.0254 (3)
H30.03940.28350.45750.030*
C40.10766 (17)0.12480 (15)0.35152 (14)0.0276 (3)
C50.23950 (19)0.08429 (16)0.33530 (15)0.0318 (3)
H50.22570.00220.26860.038*
C60.38875 (18)0.16516 (16)0.41251 (15)0.0309 (3)
H60.47740.13730.40000.037*
C70.40081 (16)0.28817 (15)0.50839 (14)0.0248 (3)
C80.49546 (16)0.48773 (15)0.67799 (13)0.0247 (3)
C90.05240 (18)0.02861 (15)0.26472 (16)0.0320 (3)
H90.04660.06650.22200.038*
C100.08901 (18)0.08408 (18)0.15404 (15)0.0346 (3)
H10A0.00010.09850.10170.042*
H10B0.09750.17770.19300.042*
C110.2454 (2)0.0209 (2)0.06288 (17)0.0457 (4)
H11A0.26890.02010.00520.055*
H11B0.23250.11100.01670.055*
C120.38452 (19)0.05379 (19)0.13816 (18)0.0398 (4)
H12A0.40880.03290.17220.048*
H12B0.48030.12950.07710.048*
C130.3493 (2)0.1026 (2)0.2526 (2)0.0520 (5)
H13A0.34220.19740.21780.062*
H13B0.43830.11330.30470.062*
C140.1923 (2)0.0033 (2)0.34305 (19)0.0509 (5)
H14A0.17030.03460.41410.061*
H14B0.20300.09540.38520.061*
C150.62304 (18)0.59702 (17)0.78620 (15)0.0318 (3)
H15A0.58700.67290.83090.048*
H15B0.71970.63800.74940.048*
H15C0.64690.55260.85010.048*
C160.08913 (16)0.45768 (15)0.77301 (14)0.0255 (3)
C170.07163 (18)0.41291 (16)0.72256 (15)0.0315 (3)
H170.10220.43800.64910.038*
C180.18705 (19)0.33113 (17)0.78072 (18)0.0376 (4)
H180.29730.30070.74730.045*
C190.1428 (2)0.29361 (17)0.88695 (17)0.0374 (4)
H190.22310.23900.92680.045*
C200.0174 (2)0.33479 (17)0.93587 (16)0.0342 (3)
H200.04820.30751.00770.041*
C210.13039 (17)0.41607 (16)0.87779 (14)0.0293 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02763 (18)0.02397 (18)0.02401 (18)0.01045 (14)0.00101 (13)0.00503 (13)
F10.0303 (5)0.0630 (6)0.0340 (5)0.0184 (5)0.0005 (4)0.0216 (5)
O10.0215 (5)0.0309 (5)0.0253 (5)0.0089 (4)0.0023 (4)0.0084 (4)
O20.0394 (6)0.0362 (6)0.0336 (6)0.0197 (5)0.0025 (5)0.0142 (5)
O30.0368 (6)0.0255 (5)0.0337 (6)0.0086 (4)0.0001 (5)0.0009 (4)
C10.0234 (6)0.0234 (6)0.0205 (6)0.0065 (5)0.0022 (5)0.0065 (5)
C20.0239 (6)0.0223 (6)0.0205 (6)0.0071 (5)0.0038 (5)0.0079 (5)
C30.0231 (6)0.0238 (6)0.0273 (7)0.0070 (5)0.0009 (5)0.0082 (5)
C40.0290 (7)0.0223 (6)0.0272 (7)0.0056 (5)0.0003 (5)0.0077 (5)
C50.0374 (8)0.0248 (7)0.0292 (7)0.0118 (6)0.0033 (6)0.0031 (6)
C60.0302 (7)0.0318 (7)0.0327 (8)0.0150 (6)0.0070 (6)0.0086 (6)
C70.0219 (6)0.0273 (7)0.0238 (6)0.0065 (5)0.0034 (5)0.0100 (5)
C80.0251 (6)0.0263 (6)0.0221 (6)0.0075 (5)0.0033 (5)0.0100 (5)
C90.0326 (7)0.0203 (6)0.0352 (8)0.0059 (6)0.0056 (6)0.0040 (6)
C100.0299 (7)0.0409 (8)0.0268 (7)0.0060 (6)0.0033 (6)0.0112 (6)
C110.0358 (9)0.0595 (11)0.0302 (8)0.0076 (8)0.0027 (7)0.0117 (8)
C120.0289 (8)0.0385 (9)0.0431 (9)0.0060 (7)0.0025 (7)0.0096 (7)
C130.0365 (9)0.0476 (10)0.0545 (11)0.0088 (8)0.0055 (8)0.0247 (9)
C140.0373 (9)0.0574 (11)0.0387 (9)0.0108 (8)0.0028 (7)0.0252 (9)
C150.0266 (7)0.0334 (8)0.0284 (7)0.0063 (6)0.0041 (6)0.0074 (6)
C160.0262 (7)0.0264 (6)0.0226 (6)0.0117 (5)0.0032 (5)0.0039 (5)
C170.0289 (7)0.0324 (7)0.0306 (7)0.0136 (6)0.0001 (6)0.0043 (6)
C180.0265 (7)0.0330 (8)0.0466 (9)0.0093 (6)0.0032 (7)0.0055 (7)
C190.0366 (8)0.0283 (7)0.0439 (9)0.0107 (6)0.0135 (7)0.0076 (7)
C200.0406 (8)0.0345 (8)0.0306 (8)0.0172 (7)0.0098 (6)0.0108 (6)
C210.0279 (7)0.0337 (7)0.0252 (7)0.0138 (6)0.0017 (5)0.0054 (6)
Geometric parameters (Å, º) top
S1—O21.4331 (11)C10—H10B0.9900
S1—O31.4347 (11)C11—C121.509 (2)
S1—C11.7267 (14)C11—H11A0.9900
S1—C161.7688 (15)C11—H11B0.9900
F1—C211.3492 (17)C12—C131.508 (3)
O1—C81.3690 (17)C12—H12A0.9900
O1—C71.3814 (16)C12—H12B0.9900
C1—C81.3593 (19)C13—C141.531 (2)
C1—C21.4495 (18)C13—H13A0.9900
C2—C71.3900 (19)C13—H13B0.9900
C2—C31.3948 (18)C14—H14A0.9900
C3—C41.3938 (19)C14—H14B0.9900
C3—H30.9500C15—H15A0.9800
C4—C51.405 (2)C15—H15B0.9800
C4—C91.5149 (19)C15—H15C0.9800
C5—C61.385 (2)C16—C211.386 (2)
C5—H50.9500C16—C171.389 (2)
C6—C71.374 (2)C17—C181.388 (2)
C6—H60.9500C17—H170.9500
C8—C151.4781 (19)C18—C191.382 (2)
C9—C101.523 (2)C18—H180.9500
C9—C141.531 (2)C19—C201.386 (2)
C9—H91.0000C19—H190.9500
C10—C111.528 (2)C20—C211.373 (2)
C10—H10A0.9900C20—H200.9500
O2—S1—O3118.98 (7)C12—C11—H11B109.2
O2—S1—C1108.44 (7)C10—C11—H11B109.2
O3—S1—C1109.88 (7)H11A—C11—H11B107.9
O2—S1—C16106.95 (7)C13—C12—C11111.81 (15)
O3—S1—C16108.27 (7)C13—C12—H12A109.3
C1—S1—C16103.14 (6)C11—C12—H12A109.3
C8—O1—C7107.02 (10)C13—C12—H12B109.3
C8—C1—C2107.83 (12)C11—C12—H12B109.3
C8—C1—S1126.81 (11)H12A—C12—H12B107.9
C2—C1—S1125.35 (10)C12—C13—C14111.71 (14)
C7—C2—C3119.77 (13)C12—C13—H13A109.3
C7—C2—C1104.36 (12)C14—C13—H13A109.3
C3—C2—C1135.83 (13)C12—C13—H13B109.3
C4—C3—C2118.38 (13)C14—C13—H13B109.3
C4—C3—H3120.8H13A—C13—H13B107.9
C2—C3—H3120.8C13—C14—C9111.01 (16)
C3—C4—C5119.56 (13)C13—C14—H14A109.4
C3—C4—C9121.05 (13)C9—C14—H14A109.4
C5—C4—C9119.40 (13)C13—C14—H14B109.4
C6—C5—C4122.76 (14)C9—C14—H14B109.4
C6—C5—H5118.6H14A—C14—H14B108.0
C4—C5—H5118.6C8—C15—H15A109.5
C7—C6—C5115.93 (14)C8—C15—H15B109.5
C7—C6—H6122.0H15A—C15—H15B109.5
C5—C6—H6122.0C8—C15—H15C109.5
C6—C7—O1125.87 (13)H15A—C15—H15C109.5
C6—C7—C2123.55 (13)H15B—C15—H15C109.5
O1—C7—C2110.57 (12)C21—C16—C17119.12 (14)
C1—C8—O1110.21 (12)C21—C16—S1120.80 (11)
C1—C8—C15134.27 (13)C17—C16—S1120.05 (11)
O1—C8—C15115.50 (12)C18—C17—C16119.21 (15)
C4—C9—C10112.58 (12)C18—C17—H17120.4
C4—C9—C14113.05 (13)C16—C17—H17120.4
C10—C9—C14109.00 (14)C19—C18—C17120.51 (15)
C4—C9—H9107.3C19—C18—H18119.7
C10—C9—H9107.3C17—C18—H18119.7
C14—C9—H9107.3C18—C19—C20120.68 (15)
C9—C10—C11111.03 (13)C18—C19—H19119.7
C9—C10—H10A109.4C20—C19—H19119.7
C11—C10—H10A109.4C21—C20—C19118.24 (15)
C9—C10—H10B109.4C21—C20—H20120.9
C11—C10—H10B109.4C19—C20—H20120.9
H10A—C10—H10B108.0F1—C21—C20118.76 (14)
C12—C11—C10112.06 (14)F1—C21—C16119.04 (13)
C12—C11—H11A109.2C20—C21—C16122.20 (14)
C10—C11—H11A109.2
O2—S1—C1—C8133.20 (13)C7—O1—C8—C15177.95 (11)
O3—S1—C1—C81.62 (15)C3—C4—C9—C1076.96 (18)
C16—S1—C1—C8113.64 (13)C5—C4—C9—C10103.00 (16)
O2—S1—C1—C248.36 (13)C3—C4—C9—C1447.1 (2)
O3—S1—C1—C2179.93 (11)C5—C4—C9—C14132.94 (16)
C16—S1—C1—C264.81 (12)C4—C9—C10—C11175.95 (14)
C8—C1—C2—C70.63 (14)C14—C9—C10—C1157.79 (18)
S1—C1—C2—C7179.32 (10)C9—C10—C11—C1256.0 (2)
C8—C1—C2—C3177.13 (15)C10—C11—C12—C1353.0 (2)
S1—C1—C2—C31.6 (2)C11—C12—C13—C1453.1 (2)
C7—C2—C3—C40.93 (19)C12—C13—C14—C956.2 (2)
C1—C2—C3—C4176.57 (14)C4—C9—C14—C13176.00 (15)
C2—C3—C4—C52.1 (2)C10—C9—C14—C1358.0 (2)
C2—C3—C4—C9177.92 (13)O2—S1—C16—C21179.39 (11)
C3—C4—C5—C61.3 (2)O3—S1—C16—C2150.05 (13)
C9—C4—C5—C6178.75 (14)C1—S1—C16—C2166.36 (13)
C4—C5—C6—C70.8 (2)O2—S1—C16—C171.21 (14)
C5—C6—C7—O1177.24 (13)O3—S1—C16—C17128.13 (12)
C5—C6—C7—C22.0 (2)C1—S1—C16—C17115.46 (12)
C8—O1—C7—C6178.82 (13)C21—C16—C17—C181.8 (2)
C8—O1—C7—C20.53 (14)S1—C16—C17—C18176.37 (11)
C3—C2—C7—C61.2 (2)C16—C17—C18—C190.5 (2)
C1—C2—C7—C6179.43 (13)C17—C18—C19—C201.1 (2)
C3—C2—C7—O1178.14 (11)C18—C19—C20—C211.3 (2)
C1—C2—C7—O10.06 (14)C19—C20—C21—F1179.99 (13)
C2—C1—C8—O10.99 (15)C19—C20—C21—C160.1 (2)
S1—C1—C8—O1179.66 (9)C17—C16—C21—F1178.43 (13)
C2—C1—C8—C15177.62 (14)S1—C16—C21—F13.38 (19)
S1—C1—C8—C151.0 (2)C17—C16—C21—C201.7 (2)
C7—O1—C8—C10.95 (15)S1—C16—C21—C20176.52 (12)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg2i0.992.733.644 (2)154
C15—H15B···Cg2ii0.982.803.454 (2)125
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg2i0.992.733.644 (2)153.5
C15—H15B···Cg2ii0.982.803.454 (2)125.2
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1068.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o324.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds