organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o571-o572

Dopaminium nitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and cLaboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de Sidi-Thabet, 2020 Tunis, Tunisia
*Correspondence e-mail: dhaouadihassouna@yahoo.fr

(Received 10 April 2014; accepted 12 April 2014; online 18 April 2014)

The asymmetric unit of the title salt [systematic name: 2-(3,4-di­hydroxy­phen­yl)ethanaminium nitrate], C8H12NO2+·NO3, contains two independent cations and two independent nitrate anions. The crystal structure consists of discrete nitrate ions stacked in layers parallel to (010). These layers are linked via the dopaminium cations by O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For pharmacological properties of dopamine, see: Jones et al. (1999[Jones, S. R., Joseph, J. D., Barak, L. S., Caron, M. G. & Wightman, R. M. (1999). J. Neurochem. 73, 2406-2414.]); Salamone & Correa (2002[Salamone, J. D. & Correa, M. (2002). Behav. Brain Res. 137, 3-25.]). For related structures, see: Gatfaoui et al. (2013[Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.], 2014a[Gatfaoui, S., Rzaigui, M. & Marouani, H. (2014a). Acta Cryst. E70, o198.], 2014b[Gatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. & Marouani, H. (2014b). Acta Cryst. E70, o398-o399.]); Marouani et al. (2012[Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Eur. J. Chem. 9, 772-779.]); Kefi et al. (2013[Kefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.]). For the perchlorate salt of the title cation, see: Boghaei et al. (2008[Boghaei, D. M., Baniyaghoob, S., Najafpour, M. M. & McKee, V. (2008). Acta Cryst. E64, o2268.]). For background to hydrogen bonding and aromatic ππ stacking inter­actions, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12NO2+·NO3

  • Mr = 216.20

  • Triclinic, [P \overline 1]

  • a = 8.3066 (4) Å

  • b = 10.4856 (5) Å

  • c = 11.2303 (7) Å

  • α = 79.623 (2)°

  • β = 89.868 (2)°

  • γ = 82.357 (2)°

  • V = 953.37 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.56 × 0.44 × 0.27 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.870, Tmax = 0.966

  • 10787 measured reflections

  • 4339 independent reflections

  • 3583 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.05

  • 4339 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O8i 0.86 (2) 1.96 (2) 2.7871 (15) 163 (2)
O2—H2O⋯O5ii 0.89 (2) 1.80 (2) 2.6863 (16) 169.7 (19)
O3—H3O⋯O7iii 0.89 (2) 1.94 (2) 2.8017 (15) 164 (2)
O4—H4O⋯O9iv 0.89 (2) 1.83 (2) 2.7196 (16) 176.6 (19)
N1—H1N⋯O1iv 0.94 (3) 2.10 (3) 3.0125 (19) 163.3 (19)
N1—H2N⋯O6v 0.90 (2) 2.10 (2) 2.9893 (17) 172.1 (17)
N1—H3N⋯O8iv 0.88 (2) 2.26 (2) 2.9867 (17) 139.6 (17)
N1—H3N⋯O2vi 0.88 (2) 2.42 (2) 3.0223 (16) 126.6 (15)
N2—H4N⋯O7ii 0.92 (2) 2.28 (2) 3.0020 (16) 135.2 (15)
N2—H4N⋯O8i 0.92 (2) 2.59 (2) 3.2672 (18) 131.3 (14)
N2—H5N⋯O10vii 0.93 (2) 1.98 (2) 2.9079 (17) 175.7 (18)
N2—H5N⋯O9vii 0.93 (2) 2.50 (2) 3.1400 (17) 126.3 (15)
N2—H6N⋯O6viii 0.93 (2) 2.17 (2) 2.8608 (17) 130.2 (15)
N2—H6N⋯O3ii 0.93 (2) 2.30 (2) 3.0236 (17) 134.5 (14)
C1—H1B⋯O5v 0.97 2.40 3.0783 (19) 126
C2—H2A⋯O4 0.97 2.46 3.4090 (19) 166
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) -x+2, -y+1, -z+1; (v) x+1, y, z; (vi) x, y+1, z; (vii) x-1, y, z; (viii) x, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Introduction top

Dopamine is an important regulator of many physiological functions, including control of locomotion, cognition, affect, and neuroendocrine hormone secretion. The dopamine transporter (DAT) plays an important role in calibrating the duration and intensity of dopamine neurotransmission in the central nervous system (Jones et al., 1999). In addition, dopamine is an important signal transmitter between the neurons and muscles (Salamone & Correa, 2002).

Experimental top

Synthesis and crystallization top

An aqueous solution containing 1 mmol of HNO3 in 10 ml of water was added to 1 mmol of dopamine hydro­chloride in 10 ml of water. The obtained solution was stirred for 15 min and then left to stand at room temperature. Colorless single crystals of the title compound were obtained after some days.

Refinement top

The hydrogen atoms bonded to oxygen and nitro­gen atoms were located from a difference map and were allowed to refine. The rest of the H atoms were treated as riding, with C—H = 0.97 Å (methyl­ene), or 0.93 Å (methine), with Uiso(H) = 1.2Ueq(C).

Results and discussion top

In this work, we report the preparation and the structural investigation of the dopaminium nitrate, C8H12NO2·NO3 (I).

The asymmetric unit of (I) is composed of two independent dopaminium cations and two independent nitrate anions (Figure 1). The structure of the compound consists of discrete nitrate ions stacked in layers parallel to the (010) plane separated by organic cations (Figure 2). The structural cohesion is established by a three-dimensional network of N—H···O, O—H···O and weak C—H···O hydrogen bonds (Brown, 1976; Blessing, 1986).

Inter­atomic bond lengths and angles of the nitrate anions spread respectively within the ranges [1.2448 (16)–1.2596 (15) Å] and [119.50 (12)–120.87 (12)°]. These geometrical features have also been noticed in other crystal structures (Marouani et al., 2012; Kefi et al., 2013; Gatfaoui et al., 2013, 2014a, 2014b).

In this atomic arrangement two independent dopaminium cations are present. Examination of the organic cations shows that the bond distances and angles show no significant difference from those obtained in other salt involving the same organic groups (Boghaei et al., 2008). The aromatic rings are planar with an average deviation of 0.0014 Å and form a dihedral angle of 7.81°. The inter­planar distance between nearby phenyl rings is in the vicinity of 4.16 Å, a bit longer than required for a medium strength ππ inter­action (Janiak, 2000).

The established H-bonds of types O—H···O, N—H···O and C—H···O (Table 1) involve oxygen atoms of the nitrate anions as acceptors, and the protonated nitro­gen atoms, carbon and oxygen atoms of dopaminium as donors.

Related literature top

For pharmacological properties of dopamine, see: Jones et al. (1999); Salamone & Correa (2002). For related structures, see: Gatfaoui et al. (2013, 2014a, 2014b); Marouani et al. (2012); Kefi et al. (2013). For the perchlorate salt of the title cation, see: Boghaei et al. (2008). For background to hydrogen bonding and aromatic ππ stacking interactions, see: Brown (1976); Blessing (1986); Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted. N atoms labelled with their generic names (No symmetry codes applied)
2-(3,4-dihydroxyphenyl)ethanaminium nitrate top
Crystal data top
C8H12NO2+·NO3Z = 4
Mr = 216.20F(000) = 456
Triclinic, P1Dx = 1.506 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3066 (4) ÅCell parameters from 3958 reflections
b = 10.4856 (5) Åθ = 2.5–27.5°
c = 11.2303 (7) ŵ = 0.13 mm1
α = 79.623 (2)°T = 150 K
β = 89.868 (2)°Prism, colorless
γ = 82.357 (2)°0.56 × 0.44 × 0.27 mm
V = 953.37 (9) Å3
Data collection top
Bruker APEXII
diffractometer
3583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.870, Tmax = 0.966k = 1313
10787 measured reflectionsl = 1414
4339 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.2245P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4339 reflectionsΔρmax = 0.31 e Å3
312 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (4)
Crystal data top
C8H12NO2+·NO3γ = 82.357 (2)°
Mr = 216.20V = 953.37 (9) Å3
Triclinic, P1Z = 4
a = 8.3066 (4) ÅMo Kα radiation
b = 10.4856 (5) ŵ = 0.13 mm1
c = 11.2303 (7) ÅT = 150 K
α = 79.623 (2)°0.56 × 0.44 × 0.27 mm
β = 89.868 (2)°
Data collection top
Bruker APEXII
diffractometer
4339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3583 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.966Rint = 0.038
10787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
4339 reflectionsΔρmin = 0.26 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.88256 (15)0.20879 (11)0.45485 (10)0.0270 (3)
O20.89365 (13)0.15989 (10)0.22563 (10)0.0231 (3)
O30.52188 (13)0.78884 (10)0.05973 (9)0.0218 (2)
O40.50913 (13)0.84937 (9)0.28522 (10)0.0199 (2)
O50.13563 (13)0.88517 (10)0.00083 (10)0.0240 (3)
O60.23349 (13)1.02198 (11)0.09420 (10)0.0247 (3)
O70.27175 (12)1.03129 (10)0.09879 (9)0.0212 (2)
O81.24531 (13)0.01122 (10)0.58958 (10)0.0240 (3)
O91.39421 (14)0.14414 (11)0.48499 (10)0.0283 (3)
O101.24180 (13)0.03858 (11)0.39320 (10)0.0264 (3)
N11.03491 (17)0.87415 (12)0.27899 (14)0.0202 (3)
N20.47018 (16)0.13341 (12)0.21268 (13)0.0181 (3)
N30.21404 (14)0.97956 (11)0.00085 (11)0.0170 (3)
N41.29264 (14)0.06439 (11)0.48912 (11)0.0189 (3)
C11.02008 (18)0.74577 (14)0.24467 (15)0.0226 (3)
H1A1.12330.68970.26060.027*
H1B0.99640.75900.15840.027*
C20.89005 (19)0.67827 (14)0.31175 (16)0.0252 (4)
H2A0.78500.72920.28870.030*
H2B0.90670.67320.39800.030*
C30.89030 (17)0.54144 (14)0.28525 (14)0.0204 (3)
C40.88790 (18)0.43580 (14)0.38027 (14)0.0208 (3)
H40.88550.45030.45960.025*
C50.88905 (17)0.30931 (14)0.35856 (13)0.0187 (3)
C60.89502 (16)0.28653 (13)0.23989 (14)0.0175 (3)
C70.89493 (18)0.39103 (14)0.14486 (14)0.0211 (3)
H70.89660.37670.06550.025*
C80.89233 (18)0.51738 (15)0.16758 (15)0.0226 (3)
H80.89190.58680.10300.027*
C90.49926 (16)0.26836 (13)0.22214 (13)0.0163 (3)
H9A0.57410.29840.16020.020*
H9B0.54900.26720.30050.020*
C100.34207 (17)0.36269 (13)0.20725 (14)0.0191 (3)
H10A0.29690.37090.12620.023*
H10B0.26340.32980.26480.023*
C110.37719 (16)0.49492 (13)0.22873 (14)0.0178 (3)
C120.42284 (16)0.58718 (13)0.13394 (13)0.0177 (3)
H120.42140.57060.05530.021*
C130.47037 (16)0.70326 (13)0.15462 (13)0.0160 (3)
C140.46516 (16)0.73132 (13)0.27195 (13)0.0159 (3)
C150.41976 (17)0.64019 (14)0.36697 (13)0.0199 (3)
H150.41730.65800.44520.024*
C160.37771 (18)0.52191 (14)0.34542 (14)0.0207 (3)
H160.34970.46040.40980.025*
H1N1.070 (3)0.864 (2)0.360 (2)0.053 (7)*
H2N1.098 (2)0.9221 (19)0.2291 (18)0.033 (5)*
H3N0.941 (2)0.9239 (19)0.2786 (17)0.034 (5)*
H4N0.565 (2)0.0765 (17)0.2227 (16)0.028 (5)*
H5N0.402 (2)0.1015 (19)0.2728 (19)0.035 (5)*
H6N0.424 (2)0.1300 (17)0.1380 (18)0.028 (5)*
H1O0.857 (3)0.142 (2)0.429 (2)0.053 (7)*
H2O0.887 (2)0.154 (2)0.147 (2)0.043 (6)*
H3O0.578 (3)0.845 (2)0.0863 (19)0.047 (6)*
H4O0.538 (2)0.8496 (19)0.361 (2)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0489 (7)0.0187 (6)0.0161 (6)0.0126 (5)0.0031 (5)0.0042 (4)
O20.0371 (6)0.0168 (5)0.0170 (6)0.0066 (4)0.0011 (5)0.0051 (4)
O30.0335 (6)0.0192 (5)0.0148 (5)0.0108 (4)0.0025 (5)0.0032 (4)
O40.0293 (6)0.0146 (5)0.0168 (6)0.0056 (4)0.0013 (4)0.0040 (4)
O50.0315 (6)0.0245 (6)0.0198 (6)0.0165 (5)0.0031 (5)0.0054 (4)
O60.0280 (6)0.0328 (6)0.0181 (6)0.0118 (5)0.0017 (5)0.0117 (5)
O70.0263 (5)0.0209 (5)0.0172 (6)0.0081 (4)0.0057 (4)0.0018 (4)
O80.0325 (6)0.0241 (6)0.0175 (6)0.0111 (4)0.0084 (5)0.0043 (4)
O90.0385 (6)0.0309 (6)0.0200 (6)0.0218 (5)0.0027 (5)0.0046 (5)
O100.0323 (6)0.0329 (6)0.0181 (6)0.0137 (5)0.0002 (5)0.0082 (5)
N10.0240 (7)0.0153 (6)0.0222 (7)0.0058 (5)0.0039 (6)0.0034 (5)
N20.0231 (6)0.0141 (6)0.0176 (7)0.0031 (5)0.0019 (5)0.0039 (5)
N30.0166 (5)0.0187 (6)0.0159 (6)0.0028 (4)0.0006 (5)0.0031 (5)
N40.0230 (6)0.0173 (6)0.0172 (7)0.0051 (5)0.0033 (5)0.0037 (5)
C10.0250 (7)0.0161 (7)0.0296 (9)0.0070 (6)0.0078 (6)0.0089 (6)
C20.0281 (8)0.0179 (7)0.0316 (9)0.0076 (6)0.0107 (7)0.0071 (6)
C30.0178 (7)0.0189 (7)0.0265 (8)0.0072 (5)0.0052 (6)0.0059 (6)
C40.0251 (7)0.0211 (7)0.0195 (8)0.0093 (6)0.0063 (6)0.0080 (6)
C50.0214 (7)0.0184 (7)0.0172 (7)0.0066 (5)0.0030 (6)0.0030 (6)
C60.0172 (6)0.0169 (7)0.0198 (8)0.0046 (5)0.0007 (6)0.0053 (6)
C70.0233 (7)0.0250 (8)0.0167 (7)0.0080 (6)0.0013 (6)0.0045 (6)
C80.0259 (8)0.0185 (7)0.0233 (8)0.0083 (6)0.0022 (6)0.0004 (6)
C90.0167 (6)0.0133 (6)0.0195 (7)0.0044 (5)0.0008 (6)0.0030 (5)
C100.0179 (7)0.0149 (7)0.0251 (8)0.0027 (5)0.0003 (6)0.0044 (6)
C110.0152 (6)0.0133 (6)0.0247 (8)0.0006 (5)0.0001 (6)0.0036 (6)
C120.0191 (7)0.0181 (7)0.0169 (7)0.0014 (5)0.0004 (6)0.0066 (6)
C130.0169 (6)0.0145 (6)0.0150 (7)0.0005 (5)0.0002 (5)0.0002 (5)
C140.0171 (6)0.0125 (6)0.0184 (7)0.0006 (5)0.0011 (5)0.0044 (5)
C150.0259 (7)0.0199 (7)0.0138 (7)0.0030 (6)0.0021 (6)0.0033 (6)
C160.0242 (7)0.0164 (7)0.0203 (8)0.0033 (6)0.0029 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C51.3738 (18)C2—H2A0.9700
O1—H1O0.86 (2)C2—H2B0.9700
O2—C61.3674 (16)C3—C81.389 (2)
O2—H2O0.89 (2)C3—C41.395 (2)
O3—C131.3709 (17)C4—C51.3899 (19)
O3—H3O0.89 (2)C4—H40.9300
O4—C141.3693 (16)C5—C61.395 (2)
O4—H4O0.89 (2)C6—C71.385 (2)
O5—N31.2526 (15)C7—C81.391 (2)
O6—N31.2467 (15)C7—H70.9300
O7—N31.2592 (15)C8—H80.9300
O8—N41.2522 (15)C9—C101.5196 (18)
O9—N41.2596 (15)C9—H9A0.9700
O10—N41.2448 (16)C9—H9B0.9700
N1—C11.4856 (18)C10—C111.5147 (18)
N1—H1N0.94 (3)C10—H10A0.9700
N1—H2N0.90 (2)C10—H10B0.9700
N1—H3N0.88 (2)C11—C161.390 (2)
N2—C91.4889 (17)C11—C121.392 (2)
N2—H4N0.915 (19)C12—C131.3862 (19)
N2—H5N0.93 (2)C12—H120.9300
N2—H6N0.93 (2)C13—C141.400 (2)
C1—C21.497 (2)C14—C151.386 (2)
C1—H1A0.9700C15—C161.394 (2)
C1—H1B0.9700C15—H150.9300
C2—C31.5166 (19)C16—H160.9300
C5—O1—H1O109.1 (15)O1—C5—C6121.11 (13)
C6—O2—H2O111.0 (13)C4—C5—C6119.73 (13)
C13—O3—H3O110.9 (14)O2—C6—C7124.11 (13)
C14—O4—H4O111.6 (13)O2—C6—C5116.37 (13)
C1—N1—H1N111.3 (13)C7—C6—C5119.46 (13)
C1—N1—H2N113.2 (12)C6—C7—C8120.29 (14)
H1N—N1—H2N110.9 (18)C6—C7—H7119.9
C1—N1—H3N113.0 (12)C8—C7—H7119.9
H1N—N1—H3N102.2 (18)C3—C8—C7121.00 (14)
H2N—N1—H3N105.6 (17)C3—C8—H8119.5
C9—N2—H4N111.3 (11)C7—C8—H8119.5
C9—N2—H5N110.8 (12)N2—C9—C10111.48 (11)
H4N—N2—H5N106.3 (16)N2—C9—H9A109.3
C9—N2—H6N112.1 (11)C10—C9—H9A109.3
H4N—N2—H6N107.8 (16)N2—C9—H9B109.3
H5N—N2—H6N108.3 (16)C10—C9—H9B109.3
O6—N3—O5119.78 (12)H9A—C9—H9B108.0
O6—N3—O7120.57 (11)C11—C10—C9108.97 (11)
O5—N3—O7119.65 (12)C11—C10—H10A109.9
O10—N4—O8120.87 (12)C9—C10—H10A109.9
O10—N4—O9119.50 (12)C11—C10—H10B109.9
O8—N4—O9119.63 (12)C9—C10—H10B109.9
N1—C1—C2112.95 (12)H10A—C10—H10B108.3
N1—C1—H1A109.0C16—C11—C12118.72 (13)
C2—C1—H1A109.0C16—C11—C10120.30 (13)
N1—C1—H1B109.0C12—C11—C10120.75 (13)
C2—C1—H1B109.0C13—C12—C11121.16 (13)
H1A—C1—H1B107.8C13—C12—H12119.4
C1—C2—C3111.68 (12)C11—C12—H12119.4
C1—C2—H2A109.3O3—C13—C12119.41 (13)
C3—C2—H2A109.3O3—C13—C14121.02 (12)
C1—C2—H2B109.3C12—C13—C14119.57 (13)
C3—C2—H2B109.3O4—C14—C15123.85 (13)
H2A—C2—H2B107.9O4—C14—C13116.47 (12)
C8—C3—C4118.26 (13)C15—C14—C13119.67 (13)
C8—C3—C2121.71 (14)C14—C15—C16120.06 (14)
C4—C3—C2120.03 (14)C14—C15—H15120.0
C5—C4—C3121.22 (14)C16—C15—H15120.0
C5—C4—H4119.4C11—C16—C15120.73 (13)
C3—C4—H4119.4C11—C16—H16119.6
O1—C5—C4119.15 (13)C15—C16—H16119.6
N1—C1—C2—C3173.68 (13)N2—C9—C10—C11175.05 (12)
C1—C2—C3—C849.6 (2)C9—C10—C11—C1686.05 (16)
C1—C2—C3—C4130.67 (15)C9—C10—C11—C1288.48 (16)
C8—C3—C4—C50.6 (2)C16—C11—C12—C130.9 (2)
C2—C3—C4—C5179.61 (13)C10—C11—C12—C13173.70 (12)
C3—C4—C5—O1178.42 (13)C11—C12—C13—O3176.89 (12)
C3—C4—C5—C60.9 (2)C11—C12—C13—C143.1 (2)
O1—C5—C6—O20.1 (2)O3—C13—C14—O41.94 (19)
C4—C5—C6—O2179.17 (13)C12—C13—C14—O4178.10 (12)
O1—C5—C6—C7177.44 (13)O3—C13—C14—C15177.00 (13)
C4—C5—C6—C71.9 (2)C12—C13—C14—C153.0 (2)
O2—C6—C7—C8178.41 (13)O4—C14—C15—C16179.61 (13)
C5—C6—C7—C81.3 (2)C13—C14—C15—C160.7 (2)
C4—C3—C8—C71.2 (2)C12—C11—C16—C151.3 (2)
C2—C3—C8—C7179.05 (13)C10—C11—C16—C15175.98 (13)
C6—C7—C8—C30.2 (2)C14—C15—C16—C111.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O8i0.86 (2)1.96 (2)2.7871 (15)163 (2)
O2—H2O···O5ii0.89 (2)1.80 (2)2.6863 (16)169.7 (19)
O3—H3O···O7iii0.89 (2)1.94 (2)2.8017 (15)164 (2)
O4—H4O···O9iv0.89 (2)1.83 (2)2.7196 (16)176.6 (19)
N1—H1N···O1iv0.94 (3)2.10 (3)3.0125 (19)163.3 (19)
N1—H2N···O6v0.90 (2)2.10 (2)2.9893 (17)172.1 (17)
N1—H3N···O8iv0.88 (2)2.26 (2)2.9867 (17)139.6 (17)
N1—H3N···O2vi0.88 (2)2.42 (2)3.0223 (16)126.6 (15)
N2—H4N···O7ii0.92 (2)2.28 (2)3.0020 (16)135.2 (15)
N2—H4N···O8i0.92 (2)2.59 (2)3.2672 (18)131.3 (14)
N2—H5N···O10vii0.93 (2)1.98 (2)2.9079 (17)175.7 (18)
N2—H5N···O9vii0.93 (2)2.50 (2)3.1400 (17)126.3 (15)
N2—H6N···O6viii0.93 (2)2.17 (2)2.8608 (17)130.2 (15)
N2—H6N···O3ii0.93 (2)2.30 (2)3.0236 (17)134.5 (14)
C1—H1B···O5v0.972.403.0783 (19)126
C2—H2A···O40.972.463.4090 (19)166
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+2, z; (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O8i0.86 (2)1.96 (2)2.7871 (15)163 (2)
O2—H2O···O5ii0.89 (2)1.80 (2)2.6863 (16)169.7 (19)
O3—H3O···O7iii0.89 (2)1.94 (2)2.8017 (15)164 (2)
O4—H4O···O9iv0.89 (2)1.83 (2)2.7196 (16)176.6 (19)
N1—H1N···O1iv0.94 (3)2.10 (3)3.0125 (19)163.3 (19)
N1—H2N···O6v0.90 (2)2.10 (2)2.9893 (17)172.1 (17)
N1—H3N···O8iv0.88 (2)2.26 (2)2.9867 (17)139.6 (17)
N1—H3N···O2vi0.88 (2)2.42 (2)3.0223 (16)126.6 (15)
N2—H4N···O7ii0.92 (2)2.28 (2)3.0020 (16)135.2 (15)
N2—H4N···O8i0.92 (2)2.59 (2)3.2672 (18)131.3 (14)
N2—H5N···O10vii0.93 (2)1.98 (2)2.9079 (17)175.7 (18)
N2—H5N···O9vii0.93 (2)2.50 (2)3.1400 (17)126.3 (15)
N2—H6N···O6viii0.93 (2)2.17 (2)2.8608 (17)130.2 (15)
N2—H6N···O3ii0.93 (2)2.30 (2)3.0236 (17)134.5 (14)
C1—H1B···O5v0.972.403.0783 (19)126.3
C2—H2A···O40.972.463.4090 (19)165.7
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+2, z; (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x, y+1, z; (vii) x1, y, z; (viii) x, y1, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals
First citationBoghaei, D. M., Baniyaghoob, S., Najafpour, M. M. & McKee, V. (2008). Acta Cryst. E64, o2268.  Web of Science CSD CrossRef IUCr Journals
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. & Marouani, H. (2014b). Acta Cryst. E70, o398–o399.  CSD CrossRef CAS IUCr Journals
First citationGatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.  CSD CrossRef IUCr Journals
First citationGatfaoui, S., Rzaigui, M. & Marouani, H. (2014a). Acta Cryst. E70, o198.  CSD CrossRef IUCr Journals
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef
First citationJones, S. R., Joseph, J. D., Barak, L. S., Caron, M. G. & Wightman, R. M. (1999). J. Neurochem. 73, 2406–2414.  Web of Science CrossRef PubMed CAS
First citationKefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.  CSD CrossRef IUCr Journals
First citationMarouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Eur. J. Chem. 9, 772–779.  CAS
First citationSalamone, J. D. & Correa, M. (2002). Behav. Brain Res. 137, 3–25.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o571-o572
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds