organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1-ethyl-3′-[hy­dr­oxy(naphthalen-1-yl)meth­yl]-1′-methyl-2-oxo­spiro­[indo­line-3,2′-pyrrolidine]-3′-carboxyl­ate

aDepartment of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark, bDepartment of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and dDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: vinothdlsc@gmail.com

(Received 12 December 2013; accepted 30 March 2014; online 12 April 2014)

In the title compound, C27H28N2O4, the pyrrolidine ring adopts a twist conformation. The plane of the indole ring is almost perpendicular to that of the pyrrolidine ring, making a dihedral angle of 88.50 (6)°. The planes of the naphthyl ring system and the pyrrolidine ring are tilted by an angle of 55.86 (5)°. The mol­ecular conformation is stabilized by intra­molecular O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006[Pradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779-828.]); For uses of pyrrolidine derivative, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); For conformation studies, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H28N2O4

  • Mr = 444.51

  • Orthorhombic, P b c a

  • a = 16.7802 (3) Å

  • b = 14.6690 (3) Å

  • c = 18.4735 (4) Å

  • V = 4547.23 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 44640 measured reflections

  • 4636 independent reflections

  • 3429 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.02

  • 4636 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 2.37 2.9121 (16) 124
O1—H1⋯N1 0.82 2.39 2.9439 (17) 126

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro compounds have received considerable interest due to their biological properties (Pradhan et al., 2006). In addition, pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein. In the title molecule (Fig. 1) the five-membered pyrrolidine ring [DS (N1) = 0.101 (1) Å and D2 (C10) = 0.051 (9) Å] adopts a twist conformation defined by the above asymmetry parameters (Nardelli, 1983). The indole ring (C1—C8/N2) is almost perpendicular to the pyrrolidine ring with dihedral angle of 88.50 (6)°. The naphthyl and pyrrolidine rings are tilted by an angle of 55.86 (5)°. The molecular conformation is stabilized by an intramolecular O—H···O and O—H···N hydrogen bond (Fig. 2 and Table 1).

Related literature top

For general background to spiro compounds and their biological activity, see: Pradhan et al. (2006); For uses of pyrrolidine derivative, see: Amal Raj et al. (2003); For conformation studies, see: Nardelli (1983).

Experimental top

A mixture of methyl 2-(hydroxy(naphthalen-1-yl)methyl)acrylate (1 mmol), N-ethyl isatin (1.1 mmol) and sarcosine (1.1 mmol) was refluxed in methanol until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The reaction mixture was dissolved in ethyl acetate and washed with water followed by brine solution. The organic layer was separated and evaporated under reduced pressure. The crude mixture was purified by column chromatography using ethyl acetate and hexane as eluent (3: 7). The product was dissolved in ethyl acetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 h resulting in the formation of single crystals

Refinement top

All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom with Uiso(H) = 1.5Ueq(O,C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.
(I) top
Crystal data top
C27H28N2O4F(000) = 1888
Mr = 444.51Dx = 1.299 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8834 reflections
a = 16.7802 (3) Åθ = 2.1–31.2°
b = 14.6690 (3) ŵ = 0.09 mm1
c = 18.4735 (4) ÅT = 293 K
V = 4547.23 (16) Å3Block, colourless
Z = 80.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4636 independent reflections
Radiation source: fine-focus sealed tube3429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scanθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2018
Tmin = 0.979, Tmax = 0.983k = 1818
44640 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0509P)2 + 1.1973P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4636 reflectionsΔρmax = 0.22 e Å3
299 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (4)
Crystal data top
C27H28N2O4V = 4547.23 (16) Å3
Mr = 444.51Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.7802 (3) ŵ = 0.09 mm1
b = 14.6690 (3) ÅT = 293 K
c = 18.4735 (4) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4636 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3429 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.041
44640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
4636 reflectionsΔρmin = 0.14 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.96460 (6)0.22318 (7)0.34518 (6)0.0455 (3)
H10.96700.18490.37750.068*
O30.90834 (6)0.42866 (7)0.49176 (5)0.0417 (3)
O20.78729 (7)0.43761 (8)0.44130 (6)0.0539 (3)
N10.86301 (8)0.14862 (9)0.46083 (7)0.0430 (3)
O41.02618 (7)0.21025 (9)0.49220 (6)0.0573 (3)
N20.96210 (8)0.25963 (9)0.59423 (7)0.0456 (3)
C181.01590 (8)0.40195 (9)0.28012 (7)0.0332 (3)
C130.94194 (8)0.37632 (10)0.31325 (7)0.0328 (3)
C120.94494 (8)0.30940 (9)0.37557 (7)0.0332 (3)
H120.98910.32760.40710.040*
C171.01480 (9)0.46284 (10)0.22021 (8)0.0388 (3)
C30.88393 (10)0.28059 (10)0.61479 (8)0.0432 (4)
C10.88143 (9)0.23837 (10)0.49136 (7)0.0360 (3)
C40.83254 (10)0.26839 (10)0.55663 (8)0.0397 (4)
C100.79905 (9)0.25417 (11)0.38403 (8)0.0410 (4)
H10A0.75030.28920.38920.049*
H10B0.81080.24760.33290.049*
C191.09071 (9)0.36786 (11)0.30294 (8)0.0395 (4)
H191.09310.32810.34210.047*
C110.86884 (8)0.30242 (10)0.42346 (7)0.0333 (3)
C230.84805 (9)0.39681 (10)0.45129 (7)0.0364 (3)
C160.94110 (10)0.49640 (11)0.19414 (9)0.0459 (4)
H160.94010.53630.15500.055*
C140.87276 (9)0.41091 (11)0.28530 (8)0.0415 (4)
H140.82450.39430.30630.050*
C201.15904 (9)0.39227 (12)0.26867 (10)0.0503 (4)
H201.20750.36880.28440.060*
C20.96610 (9)0.23489 (11)0.52364 (8)0.0417 (4)
C90.79001 (10)0.16118 (11)0.41925 (9)0.0471 (4)
H9A0.74370.15980.45070.057*
H9B0.78450.11390.38290.057*
C80.85759 (13)0.31094 (12)0.68131 (9)0.0583 (5)
H80.89260.31890.71980.070*
C211.15740 (10)0.45237 (12)0.20990 (10)0.0569 (5)
H211.20460.46860.18690.068*
C50.75264 (10)0.28726 (12)0.56506 (9)0.0490 (4)
H50.71750.27980.52660.059*
C221.08714 (10)0.48694 (12)0.18645 (9)0.0500 (4)
H221.08660.52720.14750.060*
C270.85972 (13)0.07413 (12)0.51293 (10)0.0628 (5)
H27A0.90990.06960.53760.094*
H27B0.84890.01800.48800.094*
H27C0.81820.08570.54740.094*
C240.89186 (12)0.50715 (12)0.53604 (10)0.0605 (5)
H24A0.93910.52410.56200.091*
H24B0.85020.49280.56980.091*
H24C0.87530.55690.50580.091*
C60.72542 (12)0.31771 (13)0.63193 (10)0.0595 (5)
H60.67160.33050.63830.071*
C251.03135 (11)0.26205 (13)0.64167 (10)0.0607 (5)
H25A1.06980.21720.62520.073*
H25B1.01500.24520.69020.073*
C150.87216 (10)0.47049 (11)0.22601 (9)0.0471 (4)
H150.82390.49240.20840.057*
C70.77716 (14)0.32907 (13)0.68843 (10)0.0647 (5)
H70.75770.34950.73270.078*
C261.07060 (14)0.35314 (17)0.64422 (14)0.0871 (7)
H26A1.11590.35050.67590.131*
H26B1.03340.39760.66190.131*
H26C1.08770.36990.59650.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0565 (7)0.0361 (6)0.0438 (6)0.0055 (5)0.0104 (5)0.0025 (5)
O30.0426 (6)0.0372 (6)0.0452 (6)0.0019 (4)0.0030 (5)0.0087 (5)
O20.0459 (7)0.0586 (7)0.0571 (7)0.0166 (5)0.0053 (5)0.0069 (6)
N10.0528 (8)0.0357 (7)0.0404 (7)0.0048 (6)0.0031 (6)0.0018 (6)
O40.0428 (7)0.0746 (9)0.0544 (7)0.0114 (6)0.0006 (6)0.0086 (6)
N20.0503 (8)0.0489 (8)0.0377 (7)0.0043 (6)0.0115 (6)0.0051 (6)
C180.0329 (7)0.0321 (7)0.0347 (7)0.0002 (6)0.0017 (6)0.0043 (6)
C130.0315 (8)0.0346 (8)0.0324 (7)0.0005 (6)0.0002 (6)0.0042 (6)
C120.0311 (7)0.0341 (8)0.0343 (7)0.0009 (6)0.0005 (6)0.0036 (6)
C170.0396 (8)0.0348 (8)0.0421 (8)0.0004 (6)0.0047 (7)0.0007 (7)
C30.0564 (10)0.0392 (9)0.0339 (8)0.0044 (7)0.0014 (7)0.0047 (6)
C10.0372 (8)0.0376 (8)0.0331 (7)0.0024 (6)0.0001 (6)0.0020 (6)
C40.0482 (9)0.0374 (8)0.0336 (7)0.0064 (7)0.0031 (7)0.0016 (6)
C100.0358 (8)0.0504 (9)0.0367 (8)0.0091 (7)0.0033 (6)0.0035 (7)
C190.0349 (8)0.0406 (8)0.0431 (8)0.0018 (6)0.0023 (6)0.0022 (7)
C110.0305 (7)0.0377 (8)0.0316 (7)0.0027 (6)0.0013 (6)0.0024 (6)
C230.0349 (8)0.0412 (8)0.0330 (7)0.0003 (6)0.0017 (6)0.0004 (6)
C160.0464 (10)0.0457 (9)0.0454 (9)0.0022 (7)0.0011 (7)0.0107 (7)
C140.0317 (8)0.0492 (9)0.0434 (8)0.0022 (6)0.0006 (6)0.0042 (7)
C200.0327 (8)0.0506 (10)0.0677 (11)0.0055 (7)0.0058 (8)0.0065 (8)
C20.0435 (9)0.0415 (9)0.0402 (8)0.0013 (7)0.0030 (7)0.0068 (7)
C90.0492 (10)0.0460 (9)0.0461 (9)0.0123 (7)0.0028 (7)0.0066 (7)
C80.0876 (15)0.0544 (11)0.0328 (8)0.0036 (10)0.0018 (9)0.0025 (8)
C210.0402 (10)0.0541 (11)0.0765 (12)0.0031 (8)0.0196 (9)0.0147 (9)
C50.0477 (10)0.0547 (10)0.0447 (9)0.0037 (7)0.0072 (7)0.0012 (8)
C220.0493 (10)0.0453 (10)0.0553 (10)0.0024 (7)0.0137 (8)0.0113 (8)
C270.0863 (15)0.0439 (10)0.0583 (11)0.0106 (9)0.0059 (10)0.0068 (8)
C240.0749 (13)0.0447 (10)0.0621 (11)0.0021 (9)0.0012 (10)0.0205 (9)
C60.0653 (12)0.0578 (11)0.0553 (11)0.0042 (9)0.0214 (9)0.0052 (9)
C250.0649 (12)0.0647 (12)0.0525 (10)0.0033 (9)0.0249 (9)0.0088 (9)
C150.0379 (9)0.0528 (10)0.0507 (9)0.0029 (7)0.0083 (7)0.0086 (8)
C70.0926 (16)0.0620 (12)0.0394 (9)0.0073 (11)0.0194 (10)0.0017 (8)
C260.0750 (15)0.0904 (17)0.0959 (17)0.0253 (12)0.0234 (13)0.0054 (14)
Geometric parameters (Å, º) top
O1—C121.4224 (17)C11—C231.518 (2)
O1—H10.8200C16—C151.353 (2)
O3—C231.3418 (17)C16—H160.9300
O3—C241.4392 (19)C14—C151.401 (2)
O2—C231.1965 (17)C14—H140.9300
N1—C271.457 (2)C20—C211.399 (2)
N1—C91.458 (2)C20—H200.9300
N1—C11.4652 (19)C9—H9A0.9700
O4—C21.2185 (19)C9—H9B0.9700
N2—C21.355 (2)C8—C71.382 (3)
N2—C31.400 (2)C8—H80.9300
N2—C251.456 (2)C21—C221.355 (2)
C18—C191.415 (2)C21—H210.9300
C18—C171.422 (2)C5—C61.391 (2)
C18—C131.4339 (19)C5—H50.9300
C13—C141.368 (2)C22—H220.9300
C13—C121.514 (2)C27—H27A0.9600
C12—C111.5570 (19)C27—H27B0.9600
C12—H120.9800C27—H27C0.9600
C17—C221.410 (2)C24—H24A0.9600
C17—C161.416 (2)C24—H24B0.9600
C3—C81.380 (2)C24—H24C0.9600
C3—C41.389 (2)C6—C71.368 (3)
C1—C41.523 (2)C6—H60.9300
C1—C21.542 (2)C25—C261.490 (3)
C1—C111.581 (2)C25—H25A0.9700
C4—C51.378 (2)C25—H25B0.9700
C10—C91.519 (2)C15—H150.9300
C10—C111.5501 (19)C7—H70.9300
C10—H10A0.9700C26—H26A0.9600
C10—H10B0.9700C26—H26B0.9600
C19—C201.358 (2)C26—H26C0.9600
C19—H190.9300
C12—O1—H1109.5C15—C14—H14118.9
C23—O3—C24116.77 (12)C19—C20—C21120.76 (15)
C27—N1—C9114.27 (13)C19—C20—H20119.6
C27—N1—C1115.31 (12)C21—C20—H20119.6
C9—N1—C1105.46 (12)O4—C2—N2125.39 (15)
C2—N2—C3111.49 (13)O4—C2—C1126.01 (14)
C2—N2—C25123.11 (15)N2—C2—C1108.53 (13)
C3—N2—C25125.40 (14)N1—C9—C10104.79 (12)
C19—C18—C17117.71 (13)N1—C9—H9A110.8
C19—C18—C13123.22 (13)C10—C9—H9A110.8
C17—C18—C13119.05 (13)N1—C9—H9B110.8
C14—C13—C18118.43 (13)C10—C9—H9B110.8
C14—C13—C12123.76 (13)H9A—C9—H9B108.9
C18—C13—C12117.77 (12)C3—C8—C7117.37 (17)
O1—C12—C13106.51 (11)C3—C8—H8121.3
O1—C12—C11110.86 (11)C7—C8—H8121.3
C13—C12—C11116.59 (11)C22—C21—C20120.08 (15)
O1—C12—H12107.5C22—C21—H21120.0
C13—C12—H12107.5C20—C21—H21120.0
C11—C12—H12107.5C4—C5—C6118.98 (17)
C22—C17—C16120.97 (14)C4—C5—H5120.5
C22—C17—C18119.38 (14)C6—C5—H5120.5
C16—C17—C18119.64 (13)C21—C22—C17120.94 (15)
C8—C3—C4122.11 (17)C21—C22—H22119.5
C8—C3—N2127.79 (16)C17—C22—H22119.5
C4—C3—N2110.09 (13)N1—C27—H27A109.5
N1—C1—C4116.80 (12)N1—C27—H27B109.5
N1—C1—C2108.27 (12)H27A—C27—H27B109.5
C4—C1—C2101.51 (12)N1—C27—H27C109.5
N1—C1—C11101.56 (11)H27A—C27—H27C109.5
C4—C1—C11112.59 (12)H27B—C27—H27C109.5
C2—C1—C11116.72 (12)O3—C24—H24A109.5
C5—C4—C3119.39 (14)O3—C24—H24B109.5
C5—C4—C1132.19 (14)H24A—C24—H24B109.5
C3—C4—C1108.37 (13)O3—C24—H24C109.5
C9—C10—C11106.51 (12)H24A—C24—H24C109.5
C9—C10—H10A110.4H24B—C24—H24C109.5
C11—C10—H10A110.4C7—C6—C5120.56 (18)
C9—C10—H10B110.4C7—C6—H6119.7
C11—C10—H10B110.4C5—C6—H6119.7
H10A—C10—H10B108.6N2—C25—C26113.18 (16)
C20—C19—C18121.12 (14)N2—C25—H25A108.9
C20—C19—H19119.4C26—C25—H25A108.9
C18—C19—H19119.4N2—C25—H25B108.9
C23—C11—C10113.72 (12)C26—C25—H25B108.9
C23—C11—C12108.73 (11)H25A—C25—H25B107.8
C10—C11—C12112.50 (11)C16—C15—C14120.62 (15)
C23—C11—C1107.70 (11)C16—C15—H15119.7
C10—C11—C1101.67 (11)C14—C15—H15119.7
C12—C11—C1112.35 (11)C6—C7—C8121.59 (17)
O2—C23—O3123.65 (14)C6—C7—H7119.2
O2—C23—C11126.86 (14)C8—C7—H7119.2
O3—C23—C11109.47 (12)C25—C26—H26A109.5
C15—C16—C17120.09 (14)C25—C26—H26B109.5
C15—C16—H16120.0H26A—C26—H26B109.5
C17—C16—H16120.0C25—C26—H26C109.5
C13—C14—C15122.18 (14)H26A—C26—H26C109.5
C13—C14—H14118.9H26B—C26—H26C109.5
C19—C18—C13—C14177.76 (14)C4—C1—C11—C1091.23 (14)
C17—C18—C13—C140.7 (2)C2—C1—C11—C10151.93 (12)
C19—C18—C13—C120.1 (2)N1—C1—C11—C1286.02 (13)
C17—C18—C13—C12178.35 (12)C4—C1—C11—C12148.28 (12)
C14—C13—C12—O1106.00 (15)C2—C1—C11—C1231.45 (17)
C18—C13—C12—O171.55 (15)C24—O3—C23—O212.4 (2)
C14—C13—C12—C1118.3 (2)C24—O3—C23—C11165.93 (13)
C18—C13—C12—C11164.14 (12)C10—C11—C23—O25.6 (2)
C19—C18—C17—C220.3 (2)C12—C11—C23—O2120.61 (16)
C13—C18—C17—C22178.76 (14)C1—C11—C23—O2117.41 (16)
C19—C18—C17—C16178.06 (14)C10—C11—C23—O3172.73 (11)
C13—C18—C17—C160.4 (2)C12—C11—C23—O361.09 (14)
C2—N2—C3—C8177.79 (16)C1—C11—C23—O360.89 (14)
C25—N2—C3—C83.1 (3)C22—C17—C16—C15178.16 (16)
C2—N2—C3—C40.98 (18)C18—C17—C16—C150.1 (2)
C25—N2—C3—C4178.11 (14)C18—C13—C14—C150.3 (2)
C27—N1—C1—C449.96 (19)C12—C13—C14—C15177.87 (14)
C9—N1—C1—C477.10 (15)C18—C19—C20—C210.3 (3)
C27—N1—C1—C263.76 (17)C3—N2—C2—O4177.41 (15)
C9—N1—C1—C2169.18 (12)C25—N2—C2—O41.7 (3)
C27—N1—C1—C11172.81 (14)C3—N2—C2—C10.36 (17)
C9—N1—C1—C1145.76 (14)C25—N2—C2—C1178.75 (14)
C8—C3—C4—C50.2 (2)N1—C1—C2—O453.2 (2)
N2—C3—C4—C5178.66 (14)C4—C1—C2—O4176.71 (16)
C8—C3—C4—C1177.69 (15)C11—C1—C2—O460.5 (2)
N2—C3—C4—C11.16 (17)N1—C1—C2—N2123.80 (13)
N1—C1—C4—C564.6 (2)C4—C1—C2—N20.32 (15)
C2—C1—C4—C5177.95 (17)C11—C1—C2—N2122.47 (13)
C11—C1—C4—C552.4 (2)C27—N1—C9—C10165.99 (14)
N1—C1—C4—C3118.35 (14)C1—N1—C9—C1038.31 (15)
C2—C1—C4—C30.88 (15)C11—C10—C9—N114.51 (16)
C11—C1—C4—C3124.70 (13)C4—C3—C8—C70.0 (3)
C17—C18—C19—C200.2 (2)N2—C3—C8—C7178.67 (16)
C13—C18—C19—C20178.25 (15)C19—C20—C21—C220.0 (3)
C9—C10—C11—C23127.72 (13)C3—C4—C5—C60.3 (2)
C9—C10—C11—C12108.12 (13)C1—C4—C5—C6177.12 (16)
C9—C10—C11—C112.26 (15)C20—C21—C22—C170.4 (3)
O1—C12—C11—C23177.09 (11)C16—C17—C22—C21177.74 (17)
C13—C12—C11—C2355.04 (15)C18—C17—C22—C210.6 (3)
O1—C12—C11—C1050.22 (15)C4—C5—C6—C70.2 (3)
C13—C12—C11—C1071.84 (16)C2—N2—C25—C2692.5 (2)
O1—C12—C11—C163.80 (14)C3—N2—C25—C2688.5 (2)
C13—C12—C11—C1174.14 (11)C17—C16—C15—C140.5 (3)
N1—C1—C11—C23154.27 (11)C13—C14—C15—C160.2 (3)
C4—C1—C11—C2328.58 (15)C5—C6—C7—C80.0 (3)
C2—C1—C11—C2388.26 (14)C3—C8—C7—C60.1 (3)
N1—C1—C11—C1034.47 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.822.372.9121 (16)124
O1—H1···N10.822.392.9439 (17)126
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.822.372.9121 (16)124.3
O1—H1···N10.822.392.9439 (17)125.9
 

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPradhan, R., Patra, M., Behera, A. K. & Behera, R. K. (2006). Tetrahedron, 62, 779–828.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds