organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o610-o611

1-(4-Bromo­benz­yl)-2-(4-bromo­phen­yl)-1H-benzimidazole

aKey Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education, Hangzhou Normal University, No. 58, Haishu Road, Hangzhou, 311121, People's Republic of China
*Correspondence e-mail: quzr@hznu.edu.cn

(Received 4 April 2014; accepted 22 April 2014; online 26 April 2014)

There are two mol­ecules in the asymmetric unit of the title compound, C20H14Br2N2. In the first, the dihedral angles between the mean plane of the benzimidazole group and those of the 4-bromo­benzyl and 4-chloro­phenyl groups are 50.72 (17) and 71.29 (16)°, respectively, while the corresponding angles in the second mol­ecule are 42.09 (16) and 89.05 (17)°. The 4-bromo­benzyl and 4-bromo­phenyl groups make an angle of 68.1 (2) and 85.1 (21)° with each other in the two mol­ecules. In the crystal, weak C—H⋯N and C—H⋯Br hydrogen bonds link the mol­ecules along the c-axis direction. Br⋯Br inter­actions [3.5733 (9)Å] are also observed.

Related literature

For the chemistry of benzimidazoles, see: Steel (1990[Steel, P. J. (1990). Coord. Chem. Rev. 106, 227-265.]); Bhattacharya & Chaudhuri (2008[Bhattacharya, S. & Chaudhuri, P. (2008). Curr. Med. Chem. 15, 1762-1777.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Boiani & González (2005[Boiani, M. & González, M. (2005). Mini Rev. Med. Chem. 5, 409-424.]); Bai et al. (2001[Bai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544-546.]); Hasegawa et al. (1999[Hasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T. & Yangi, K. (1999). Tetrahedron, 55, 12957-12968.]); Bouwman et al. (1990[Bouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143-172.]); Pujar & Bharamgoudar (1988[Pujar, M. A. & Bharamgoudar, T. D. (1988). Transition Met. Chem. 13, 423-425.]). For their use in sunthesis, see: Sasaki et al. (1991[Sasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318-1324.]); Wan et al. (2009[Wan, J.-P., Gan, S.-F., Wu J.-M. & Pan, Y.-J. (2009). Green Chem. 11, 1633-1637.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14Br2N2

  • Mr = 442.15

  • Triclinic, [P \overline 1]

  • a = 9.7537 (9) Å

  • b = 10.5758 (10) Å

  • c = 17.8255 (17) Å

  • α = 83.435 (2)°

  • β = 81.702 (2)°

  • γ = 75.621 (2)°

  • V = 1756.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.62 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.258, Tmax = 0.398

  • 22195 measured reflections

  • 8094 independent reflections

  • 5171 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.128

  • S = 1.03

  • 8094 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯Br3i 0.93 2.85 3.433 (4) 122
C26—H26⋯N4ii 0.93 2.62 3.513 (4) 161
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organic ligands containing multiple heterocyclic rings are very useful tools in the self-assembly of metallosupramolecular compounds (Steel, 1990). Functionalized benzimidazoles represent an important class of N-containing heterocyclic compounds and have received considerable attention in recent times because their derivatives bear versatile pharmacological properties (Bhattacharya & Chaudhuri, 2008) based on their presence in both clinical medicines (Horton et al., 2003) and compounds of broad biological functions (Boiani et al., 2005). They are important intermediates in many organic reactions (Bai et al., 2001; Hasegawa et al., 1999), and act as ligands to transition metals for modelling biological systems (Bouwman et al., 1990; Pujar et al., 1988). Herein, we report the synthesis and crystal structure of a new benzimidazole derivative 1-(4-bromobenzyl)-2-(4-bromophenyl)-1H-benzimidazole (Fig. 1)·In the title compound C20H14N2Br2, there are two molecules in the asymmetric unit. The dihedral angles between the least-squares plane of the benzimidazole group and those of the 4-bromobenzyl and 4-chlorophenyl groups are 50.72 (17); 42.09 (16) and 71.29 (16);89.05 (17) respectively. The 4-bromobenzyl and 4-bromophenyl groups make an angle of 68.1 (2); 85.1 (2) (1) with each other. Weak intramolecular hydrogen bonds of C—H···N and Br···Br interactions are observed.

Related literature top

For the chemistry of benzimidazoles, see: Steel (1990); Bhattacharya & Chaudhuri (2008); Horton et al. (2003); Boiani et al. (2005); Bai et al. (2001); Hasegawa et al. (1999); Bouwman et al. (1990); Pujar et al. (1988). For related literature <b?[on what subject?], see: Sasaki et al. (1991); Wan et al. (2009).

Experimental top

1.0 mmol 4-bromobenzaldehyde and 2 ml water were located in a round bottom flask, and 0.5 mmol benzene-1, 2-diamine was then added. Finally, 0.5 mmol TMSCl was injected to the mixture. The reaction was stirred at room temperature for 5 h to form homogeneous suspension. The suspension was then filtered and the residue was washed with 10 ml water to give product. The crude product was recrystallized with ethanol.

Refinement top

All H atoms were placed in calculated positions with C(sp3)—H = 0.97 and C(sp2)—H = 0.93 \%A, and torsion angles were refined. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compoud with atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry codes: (i) x, y, z; (ii) -x, -y, -z].
1-(4-Bromobenzyl)-2-(4-bromophenyl)-1H-benzimidazole top
Crystal data top
C20H14Br2N2V = 1756.6 (3) Å3
Mr = 442.15Z = 4
Triclinic, P1F(000) = 872
Hall symbol: -P 1Dx = 1.672 Mg m3
a = 9.7537 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5758 (10) ŵ = 4.62 mm1
c = 17.8255 (17) ÅT = 293 K
α = 83.435 (2)°Block, colorless
β = 81.702 (2)°0.30 × 0.26 × 0.20 mm
γ = 75.621 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8094 independent reflections
Radiation source: fine-focus sealed tube5171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.258, Tmax = 0.398k = 1313
22195 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.0252P]
where P = (Fo2 + 2Fc2)/3
8094 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C20H14Br2N2γ = 75.621 (2)°
Mr = 442.15V = 1756.6 (3) Å3
Triclinic, P1Z = 4
a = 9.7537 (9) ÅMo Kα radiation
b = 10.5758 (10) ŵ = 4.62 mm1
c = 17.8255 (17) ÅT = 293 K
α = 83.435 (2)°0.30 × 0.26 × 0.20 mm
β = 81.702 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
8094 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5171 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 0.398Rint = 0.034
22195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.78 e Å3
8094 reflectionsΔρmin = 0.51 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.15730 (5)0.89638 (4)0.54077 (3)0.08072 (17)
Br20.16242 (6)0.32973 (6)0.10730 (4)0.1089 (2)
N10.3305 (3)0.4230 (3)0.32967 (15)0.0433 (6)
N20.3833 (3)0.3609 (3)0.44875 (15)0.0500 (7)
C10.3026 (3)0.4476 (3)0.40547 (18)0.0428 (7)
C20.4706 (3)0.2743 (3)0.3994 (2)0.0501 (8)
C30.5784 (4)0.1635 (4)0.4142 (2)0.0675 (11)
H30.59860.13560.46360.081*
C40.6537 (4)0.0968 (4)0.3541 (3)0.0782 (13)
H40.72610.02280.36290.094*
C50.6235 (4)0.1382 (4)0.2798 (3)0.0742 (12)
H50.67840.09220.24000.089*
C60.5146 (4)0.2452 (4)0.2633 (2)0.0621 (10)
H60.49260.27090.21400.075*
C70.4402 (3)0.3118 (3)0.32494 (19)0.0471 (8)
C80.1638 (3)0.4571 (3)0.23018 (17)0.0411 (7)
C90.1261 (3)0.3402 (3)0.25350 (19)0.0478 (8)
H90.16600.28770.29400.057*
C100.0299 (4)0.3001 (4)0.2176 (2)0.0602 (10)
H100.00550.22070.23310.072*
C110.0294 (4)0.3804 (4)0.1582 (2)0.0625 (10)
C120.0032 (4)0.4980 (4)0.1359 (2)0.0652 (10)
H120.03910.55200.09650.078*
C130.0992 (4)0.5355 (4)0.1723 (2)0.0547 (9)
H130.12110.61610.15740.066*
C140.1930 (3)0.5584 (3)0.43392 (17)0.0431 (7)
C150.2257 (3)0.6373 (3)0.4824 (2)0.0525 (8)
H150.31890.62180.49370.063*
C160.1234 (4)0.7384 (4)0.5144 (2)0.0584 (9)
H160.14610.79030.54730.070*
C170.0147 (3)0.7600 (3)0.49573 (19)0.0495 (8)
C180.0515 (3)0.6844 (3)0.44837 (19)0.0523 (9)
H180.14510.69990.43770.063*
C190.0526 (3)0.5847 (3)0.41662 (18)0.0479 (8)
H190.02920.53410.38320.057*
C200.2732 (3)0.5045 (3)0.26516 (18)0.0477 (8)
H20A0.35180.51180.22610.057*
H20B0.22970.59170.28100.057*
Br30.63928 (5)1.35816 (5)0.04992 (2)0.07448 (16)
Br40.74016 (4)0.49101 (4)0.33062 (3)0.07748 (16)
N30.2139 (3)0.9848 (2)0.18779 (14)0.0400 (6)
N40.1287 (3)1.0167 (3)0.07537 (15)0.0472 (6)
C210.2261 (3)1.0367 (3)0.11357 (17)0.0417 (7)
C220.0980 (3)0.9287 (3)0.19718 (17)0.0403 (7)
C230.0326 (4)0.8664 (3)0.2605 (2)0.0530 (9)
H230.06730.85310.30750.064*
C240.0858 (4)0.8261 (4)0.2497 (2)0.0593 (9)
H240.13330.78510.29070.071*
C250.1374 (4)0.8444 (4)0.1792 (2)0.0605 (10)
H250.21760.81480.17440.073*
C260.0721 (3)0.9056 (4)0.1164 (2)0.0542 (9)
H260.10600.91710.06940.065*
C270.0471 (3)0.9493 (3)0.12673 (18)0.0441 (7)
C280.3296 (3)1.1121 (3)0.07887 (17)0.0428 (7)
C290.4738 (3)1.0776 (3)0.08827 (19)0.0498 (8)
H290.50861.00450.12040.060*
C300.5661 (4)1.1508 (4)0.0504 (2)0.0526 (8)
H300.66231.12720.05680.063*
C310.5138 (4)1.2583 (4)0.00333 (19)0.0518 (8)
C320.3721 (4)1.2963 (4)0.0070 (2)0.0583 (9)
H320.33861.37040.03870.070*
C330.2796 (4)1.2225 (3)0.03065 (19)0.0523 (8)
H330.18361.24680.02370.063*
C340.4011 (3)0.8685 (3)0.26853 (17)0.0405 (7)
C350.4468 (4)0.8454 (4)0.33915 (19)0.0593 (10)
H350.40980.90700.37450.071*
C360.5462 (4)0.7330 (4)0.3592 (2)0.0663 (11)
H360.57470.71800.40770.080*
C370.6015 (3)0.6445 (3)0.3062 (2)0.0499 (8)
C380.5589 (3)0.6633 (3)0.23460 (19)0.0490 (8)
H380.59710.60180.19920.059*
C390.4581 (3)0.7755 (3)0.21666 (18)0.0468 (8)
H390.42770.78900.16860.056*
C400.2950 (3)0.9941 (3)0.24839 (18)0.0459 (8)
H40A0.22921.01910.29340.055*
H40B0.34561.06280.23310.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0788 (3)0.0672 (3)0.0755 (3)0.0185 (2)0.0038 (2)0.0161 (2)
Br20.0928 (4)0.1135 (4)0.1374 (5)0.0157 (3)0.0652 (3)0.0351 (4)
N10.0403 (14)0.0471 (15)0.0417 (15)0.0073 (11)0.0073 (11)0.0042 (12)
N20.0452 (15)0.0564 (17)0.0450 (15)0.0001 (13)0.0116 (12)0.0090 (13)
C10.0391 (16)0.0477 (19)0.0423 (17)0.0088 (14)0.0080 (13)0.0056 (14)
C20.0403 (17)0.052 (2)0.056 (2)0.0013 (15)0.0109 (15)0.0112 (16)
C30.055 (2)0.065 (2)0.076 (3)0.0094 (19)0.0206 (19)0.012 (2)
C40.060 (2)0.062 (3)0.108 (4)0.009 (2)0.017 (2)0.031 (2)
C50.061 (2)0.079 (3)0.077 (3)0.003 (2)0.001 (2)0.038 (2)
C60.057 (2)0.070 (3)0.059 (2)0.0081 (19)0.0032 (17)0.0253 (19)
C70.0357 (16)0.054 (2)0.053 (2)0.0091 (14)0.0043 (14)0.0145 (16)
C80.0412 (16)0.0445 (18)0.0340 (16)0.0038 (13)0.0007 (13)0.0067 (13)
C90.0463 (18)0.0428 (19)0.052 (2)0.0029 (14)0.0135 (15)0.0013 (15)
C100.052 (2)0.047 (2)0.083 (3)0.0071 (16)0.0150 (19)0.0115 (19)
C110.048 (2)0.070 (3)0.071 (3)0.0017 (18)0.0218 (18)0.022 (2)
C120.067 (2)0.075 (3)0.051 (2)0.007 (2)0.0215 (18)0.0022 (19)
C130.056 (2)0.053 (2)0.050 (2)0.0093 (16)0.0040 (16)0.0083 (16)
C140.0463 (17)0.0454 (18)0.0344 (16)0.0051 (14)0.0062 (13)0.0010 (13)
C150.0433 (18)0.057 (2)0.056 (2)0.0050 (15)0.0127 (15)0.0088 (17)
C160.063 (2)0.052 (2)0.060 (2)0.0064 (17)0.0101 (18)0.0136 (17)
C170.0503 (19)0.0428 (18)0.0465 (19)0.0003 (15)0.0011 (15)0.0001 (15)
C180.0434 (18)0.058 (2)0.0468 (19)0.0004 (15)0.0058 (15)0.0036 (16)
C190.0468 (18)0.053 (2)0.0421 (18)0.0064 (15)0.0083 (14)0.0032 (15)
C200.0546 (19)0.0498 (19)0.0389 (17)0.0142 (15)0.0045 (14)0.0022 (14)
Br30.0869 (3)0.1047 (4)0.0508 (2)0.0628 (3)0.0016 (2)0.0045 (2)
Br40.0602 (3)0.0730 (3)0.0883 (3)0.0071 (2)0.0228 (2)0.0056 (2)
N30.0405 (13)0.0419 (14)0.0366 (14)0.0078 (11)0.0078 (10)0.0007 (11)
N40.0477 (15)0.0530 (17)0.0406 (15)0.0120 (12)0.0097 (12)0.0033 (12)
C210.0403 (16)0.0435 (18)0.0386 (17)0.0061 (13)0.0054 (13)0.0004 (13)
C220.0399 (16)0.0381 (17)0.0387 (17)0.0034 (13)0.0041 (13)0.0010 (13)
C230.059 (2)0.0447 (19)0.0473 (19)0.0027 (16)0.0013 (16)0.0022 (15)
C240.052 (2)0.057 (2)0.063 (2)0.0135 (17)0.0059 (17)0.0041 (18)
C250.0438 (19)0.058 (2)0.079 (3)0.0147 (17)0.0080 (18)0.005 (2)
C260.0481 (19)0.059 (2)0.057 (2)0.0134 (16)0.0150 (16)0.0036 (17)
C270.0417 (17)0.0449 (18)0.0428 (18)0.0078 (14)0.0041 (14)0.0024 (14)
C280.0454 (17)0.0474 (18)0.0381 (17)0.0148 (14)0.0061 (13)0.0033 (14)
C290.0490 (19)0.051 (2)0.0502 (19)0.0103 (16)0.0106 (15)0.0028 (16)
C300.0422 (17)0.068 (2)0.053 (2)0.0191 (16)0.0050 (15)0.0127 (18)
C310.058 (2)0.065 (2)0.0413 (18)0.0330 (18)0.0018 (15)0.0090 (16)
C320.068 (2)0.058 (2)0.051 (2)0.0204 (19)0.0123 (18)0.0050 (17)
C330.0518 (19)0.057 (2)0.049 (2)0.0173 (16)0.0104 (15)0.0078 (16)
C340.0406 (16)0.0464 (18)0.0355 (16)0.0124 (13)0.0041 (12)0.0032 (13)
C350.058 (2)0.078 (3)0.0351 (18)0.0038 (18)0.0091 (15)0.0170 (17)
C360.057 (2)0.094 (3)0.0408 (19)0.001 (2)0.0134 (16)0.0055 (19)
C370.0405 (17)0.054 (2)0.052 (2)0.0066 (15)0.0065 (15)0.0020 (16)
C380.0515 (19)0.0449 (19)0.0494 (19)0.0077 (15)0.0072 (15)0.0060 (15)
C390.0542 (19)0.0493 (19)0.0395 (17)0.0134 (15)0.0133 (14)0.0022 (14)
C400.0537 (19)0.0464 (19)0.0378 (17)0.0095 (15)0.0083 (14)0.0053 (14)
Geometric parameters (Å, º) top
Br1—C171.899 (3)Br3—C311.895 (3)
Br2—C111.895 (4)Br4—C371.890 (3)
N1—C11.381 (4)N3—C211.374 (4)
N1—C71.381 (4)N3—C221.383 (4)
N1—C201.448 (4)N3—C401.453 (4)
N2—C11.308 (4)N4—C211.316 (4)
N2—C21.385 (4)N4—C271.379 (4)
C1—C141.460 (4)C21—C281.464 (5)
C2—C71.394 (5)C22—C271.391 (4)
C2—C31.395 (4)C22—C231.395 (4)
C3—C41.368 (6)C23—C241.372 (5)
C3—H30.9300C23—H230.9300
C4—C51.397 (6)C24—C251.396 (5)
C4—H40.9300C24—H240.9300
C5—C61.382 (5)C25—C261.382 (5)
C5—H50.9300C25—H250.9300
C6—C71.386 (5)C26—C271.395 (5)
C6—H60.9300C26—H260.9300
C8—C131.372 (4)C28—C291.392 (4)
C8—C91.378 (5)C28—C331.396 (4)
C8—C201.519 (5)C29—C301.384 (5)
C9—C101.379 (5)C29—H290.9300
C9—H90.9300C30—C311.369 (5)
C10—C111.380 (5)C30—H300.9300
C10—H100.9300C31—C321.373 (5)
C11—C121.361 (6)C32—C331.389 (5)
C12—C131.368 (5)C32—H320.9300
C12—H120.9300C33—H330.9300
C13—H130.9300C34—C351.371 (4)
C14—C151.387 (5)C34—C391.386 (4)
C14—C191.400 (4)C34—C401.509 (4)
C15—C161.382 (5)C35—C361.382 (5)
C15—H150.9300C35—H350.9300
C16—C171.392 (5)C36—C371.366 (5)
C16—H160.9300C36—H360.9300
C17—C181.366 (5)C37—C381.376 (5)
C18—C191.380 (5)C38—C391.379 (4)
C18—H180.9300C38—H380.9300
C19—H190.9300C39—H390.9300
C20—H20A0.9700C40—H40A0.9700
C20—H20B0.9700C40—H40B0.9700
C1—N1—C7106.3 (2)C21—N3—C22106.3 (2)
C1—N1—C20128.2 (3)C21—N3—C40128.8 (3)
C7—N1—C20125.0 (3)C22—N3—C40124.7 (2)
C1—N2—C2104.9 (3)C21—N4—C27105.3 (3)
N2—C1—N1113.1 (3)N4—C21—N3112.6 (3)
N2—C1—C14123.8 (3)N4—C21—C28121.6 (3)
N1—C1—C14123.1 (3)N3—C21—C28125.7 (3)
N2—C2—C7110.5 (3)N3—C22—C27105.6 (3)
N2—C2—C3130.0 (3)N3—C22—C23132.0 (3)
C7—C2—C3119.5 (3)C27—C22—C23122.4 (3)
C4—C3—C2118.4 (4)C24—C23—C22116.2 (3)
C4—C3—H3120.8C24—C23—H23121.9
C2—C3—H3120.8C22—C23—H23121.9
C3—C4—C5121.0 (4)C23—C24—C25122.2 (3)
C3—C4—H4119.5C23—C24—H24118.9
C5—C4—H4119.5C25—C24—H24118.9
C6—C5—C4122.1 (4)C26—C25—C24121.5 (3)
C6—C5—H5118.9C26—C25—H25119.2
C4—C5—H5118.9C24—C25—H25119.2
C5—C6—C7115.9 (4)C25—C26—C27117.1 (3)
C5—C6—H6122.0C25—C26—H26121.5
C7—C6—H6122.0C27—C26—H26121.5
N1—C7—C6131.7 (3)N4—C27—C22110.2 (3)
N1—C7—C2105.2 (3)N4—C27—C26129.3 (3)
C6—C7—C2123.0 (3)C22—C27—C26120.6 (3)
C13—C8—C9118.5 (3)C29—C28—C33118.7 (3)
C13—C8—C20117.9 (3)C29—C28—C21124.4 (3)
C9—C8—C20123.7 (3)C33—C28—C21116.9 (3)
C8—C9—C10121.0 (3)C30—C29—C28120.8 (3)
C8—C9—H9119.5C30—C29—H29119.6
C10—C9—H9119.5C28—C29—H29119.6
C9—C10—C11118.5 (4)C31—C30—C29119.1 (3)
C9—C10—H10120.7C31—C30—H30120.4
C11—C10—H10120.7C29—C30—H30120.4
C12—C11—C10121.3 (3)C30—C31—C32121.9 (3)
C12—C11—Br2118.6 (3)C30—C31—Br3119.6 (3)
C10—C11—Br2120.1 (3)C32—C31—Br3118.5 (3)
C11—C12—C13119.0 (3)C31—C32—C33119.0 (3)
C11—C12—H12120.5C31—C32—H32120.5
C13—C12—H12120.5C33—C32—H32120.5
C12—C13—C8121.6 (4)C32—C33—C28120.5 (3)
C12—C13—H13119.2C32—C33—H33119.7
C8—C13—H13119.2C28—C33—H33119.7
C15—C14—C19118.3 (3)C35—C34—C39118.0 (3)
C15—C14—C1119.6 (3)C35—C34—C40120.1 (3)
C19—C14—C1122.0 (3)C39—C34—C40121.9 (3)
C16—C15—C14121.7 (3)C34—C35—C36121.9 (3)
C16—C15—H15119.2C34—C35—H35119.1
C14—C15—H15119.2C36—C35—H35119.1
C15—C16—C17117.8 (3)C37—C36—C35118.4 (3)
C15—C16—H16121.1C37—C36—H36120.8
C17—C16—H16121.1C35—C36—H36120.8
C18—C17—C16122.4 (3)C36—C37—C38121.8 (3)
C18—C17—Br1119.3 (3)C36—C37—Br4119.8 (3)
C16—C17—Br1118.3 (3)C38—C37—Br4118.4 (3)
C17—C18—C19118.8 (3)C37—C38—C39118.4 (3)
C17—C18—H18120.6C37—C38—H38120.8
C19—C18—H18120.6C39—C38—H38120.8
C18—C19—C14121.0 (3)C38—C39—C34121.5 (3)
C18—C19—H19119.5C38—C39—H39119.2
C14—C19—H19119.5C34—C39—H39119.2
N1—C20—C8115.7 (3)N3—C40—C34113.7 (3)
N1—C20—H20A108.4N3—C40—H40A108.8
C8—C20—H20A108.4C34—C40—H40A108.8
N1—C20—H20B108.4N3—C40—H40B108.8
C8—C20—H20B108.4C34—C40—H40B108.8
H20A—C20—H20B107.4H40A—C40—H40B107.7
C2—N2—C1—N10.5 (4)C27—N4—C21—N30.5 (3)
C2—N2—C1—C14179.8 (3)C27—N4—C21—C28176.9 (3)
C7—N1—C1—N21.0 (4)C22—N3—C21—N40.7 (3)
C20—N1—C1—N2173.0 (3)C40—N3—C21—N4175.6 (3)
C7—N1—C1—C14179.7 (3)C22—N3—C21—C28176.6 (3)
C20—N1—C1—C147.7 (5)C40—N3—C21—C281.6 (5)
C1—N2—C2—C70.1 (4)C21—N3—C22—C270.6 (3)
C1—N2—C2—C3179.3 (4)C40—N3—C22—C27175.8 (3)
N2—C2—C3—C4177.4 (4)C21—N3—C22—C23177.3 (3)
C7—C2—C3—C41.7 (6)C40—N3—C22—C232.1 (5)
C2—C3—C4—C50.2 (7)N3—C22—C23—C24177.6 (3)
C3—C4—C5—C61.8 (7)C27—C22—C23—C240.1 (5)
C4—C5—C6—C72.1 (6)C22—C23—C24—C250.8 (5)
C1—N1—C7—C6177.4 (4)C23—C24—C25—C260.5 (6)
C20—N1—C7—C65.1 (6)C24—C25—C26—C270.6 (5)
C1—N1—C7—C21.0 (4)C21—N4—C27—C220.1 (4)
C20—N1—C7—C2173.3 (3)C21—N4—C27—C26178.8 (3)
C5—C6—C7—N1177.6 (4)N3—C22—C27—N40.3 (3)
C5—C6—C7—C20.5 (6)C23—C22—C27—N4177.8 (3)
N2—C2—C7—N10.7 (4)N3—C22—C27—C26179.3 (3)
C3—C2—C7—N1180.0 (3)C23—C22—C27—C261.1 (5)
N2—C2—C7—C6177.9 (3)C25—C26—C27—N4177.4 (3)
C3—C2—C7—C61.4 (6)C25—C26—C27—C221.4 (5)
C13—C8—C9—C102.6 (5)N4—C21—C28—C29137.9 (3)
C20—C8—C9—C10177.6 (3)N3—C21—C28—C2945.0 (5)
C8—C9—C10—C110.8 (5)N4—C21—C28—C3339.1 (4)
C9—C10—C11—C121.3 (6)N3—C21—C28—C33137.9 (3)
C9—C10—C11—Br2179.9 (3)C33—C28—C29—C300.3 (5)
C10—C11—C12—C131.4 (6)C21—C28—C29—C30176.7 (3)
Br2—C11—C12—C13180.0 (3)C28—C29—C30—C310.1 (5)
C11—C12—C13—C80.5 (6)C29—C30—C31—C320.4 (5)
C9—C8—C13—C122.5 (5)C29—C30—C31—Br3179.2 (3)
C20—C8—C13—C12177.7 (3)C30—C31—C32—C330.8 (6)
N2—C1—C14—C1549.0 (5)Br3—C31—C32—C33178.8 (3)
N1—C1—C14—C15131.8 (3)C31—C32—C33—C280.6 (5)
N2—C1—C14—C19128.0 (4)C29—C28—C33—C320.1 (5)
N1—C1—C14—C1951.2 (5)C21—C28—C33—C32177.3 (3)
C19—C14—C15—C161.1 (5)C39—C34—C35—C360.3 (6)
C1—C14—C15—C16176.1 (3)C40—C34—C35—C36178.5 (4)
C14—C15—C16—C170.7 (5)C34—C35—C36—C371.2 (6)
C15—C16—C17—C180.9 (5)C35—C36—C37—C381.3 (6)
C15—C16—C17—Br1178.8 (3)C35—C36—C37—Br4178.9 (3)
C16—C17—C18—C191.4 (5)C36—C37—C38—C390.4 (5)
Br1—C17—C18—C19179.3 (2)Br4—C37—C38—C39179.7 (3)
C17—C18—C19—C141.7 (5)C37—C38—C39—C340.6 (5)
C15—C14—C19—C181.6 (5)C35—C34—C39—C380.6 (5)
C1—C14—C19—C18175.5 (3)C40—C34—C39—C38177.6 (3)
C1—N1—C20—C8107.0 (4)C21—N3—C40—C34106.7 (3)
C7—N1—C20—C882.3 (4)C22—N3—C40—C3479.2 (4)
C13—C8—C20—N1175.6 (3)C35—C34—C40—N3156.4 (3)
C9—C8—C20—N14.2 (4)C39—C34—C40—N325.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br3i0.932.853.433 (4)122
C26—H26···N4ii0.932.623.513 (4)161
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···Br3i0.932.853.433 (4)122
C26—H26···N4ii0.932.623.513 (4)161
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z.
 

Acknowledgements

This work was supported by a start-up grant from Hangzhou Normal University to Z-RQ.

References

First citationBai, Y., Lu, J., Shi, Z. & Yang, B. (2001). Synlett, 12, 544–546.
First citationBhattacharya, S. & Chaudhuri, P. (2008). Curr. Med. Chem. 15, 1762–1777.  Web of Science CrossRef PubMed CAS
First citationBoiani, M. & González, M. (2005). Mini Rev. Med. Chem. 5, 409–424.  Web of Science CrossRef PubMed CAS
First citationBouwman, E., Driessen, W. L. & Reedjik, J. (1990). Coord. Chem. Rev. 104, 143–172.  CrossRef CAS Web of Science
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationHasegawa, E., Yoneoka, A., Suzuki, K., Kato, T., Kitazume, T. & Yangi, K. (1999). Tetrahedron, 55, 12957–12968.  Web of Science CrossRef CAS
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS
First citationPujar, M. A. & Bharamgoudar, T. D. (1988). Transition Met. Chem. 13, 423–425.  CrossRef CAS Web of Science
First citationSasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318–1324.  CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSteel, P. J. (1990). Coord. Chem. Rev. 106, 227–265.  CrossRef CAS Web of Science
First citationWan, J.-P., Gan, S.-F., Wu J.-M. & Pan, Y.-J. (2009). Green Chem. 11, 1633–1637.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o610-o611
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds