organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­­oxy)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde

aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: dr@physics.uni-mysore.ac.in

(Received 15 March 2014; accepted 9 April 2014; online 16 April 2014)

In the title compound, C17H13ClN2O2, the phenyl and chloro­benzene rings are inclined to the central pyrazole ring at 40.84 (9) and 65.30 (9)°, respectively. In the crystal, pairs of C—H⋯π inter­actions link the mol­ecules into inversion dimers and C—H⋯O hydrogen bonds link these dimers into columns extended in [010]. The crystal packing exhibits short inter­molecular O⋯Cl contacts of 3.0913 (16) Å.

Related literature

For biological properties and pharmocological applications of ar­yloxy pyrazole derivatives, see: Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Girisha et al. (2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree. (2010). Eur. J. Med. Chem. 45, 4640-4644.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.], 2010[Isloor, A. M., Kalluraya, B. & Pai, S. K. (2010). Eur. J. Med. Chem. 45, 825-830.]); Shobhitha et al. (2013[Shobhitha, S., Kalluraya, B., Nithinchandra, B. M., Joshi, C. G., Joshi, H. & Nidavani, R. B. (2013). Indian J. Heterocycl. Chem. 23, 33-38.]). For related structures, see: Shahani, Fun, Ragavan et al. (2011[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2011). Acta Cryst. E67, o475.]); Shahani, Fun, Shetty et al. (2011[Shahani, T., Fun, H.-K., Shetty, S. & Kalluraya, B. (2011). Acta Cryst. E67, o2646.]); Prasath et al. (2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2650.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClN2O2

  • Mr = 312.74

  • Monoclinic, P 21 /c

  • a = 9.1016 (7) Å

  • b = 7.5298 (6) Å

  • c = 22.1242 (16) Å

  • β = 93.908 (3)°

  • V = 1512.7 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.31 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.21 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.619, Tmax = 0.643

  • 9744 measured reflections

  • 2501 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.105

  • S = 1.03

  • 2501 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.58 3.503 (2) 171
C2—H2⋯Cgii 0.93 2.63 3.476 (2) 152
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Aryloxy pyrazoles and their derivatives possess a significant pharmcological activities such as antimicrobial (Rai et al. 2008; Girisha et al., 2010), anti-inflammatory (Isloor et al., 2009) and analgesic activities (Shobhitha et al., 2013). The title compound can serve as an intermediate in the synthesis of various pyrazole derivatives with significant pharmacological activities (Isloor et al., 2010).

In the title compound (Fig.1), all bond lengths and angles are normal and correspond well to those observed in the related compounds (Shahani, Fun, Ragavan et al., 2011; Shahani, Fun, Shetty et al., 2011; Prasath et al., 2011). The pyrazole ring makes dihedral angles of 65.30 (9)° with chlorobenzene ring and 40.84 (9)° with benzene ring. The dihedral angle between the chlorobenzene ring and benzene ring is 76.23 (9)°.

In the crystal, C–H···π interactions (Table 1) link the molecules into inversion dimers, and intermolecular C–H···O hydrogen bonds (Table 1) link these dimers into columns extended in [010]. The crystal packing exhibits short intermolecular O···Cl contacts of 3.0913 (16) Å.

Related literature top

For biological properties and pharmocological applications of aryloxy pyrazole derivatives, see: Rai et al. (2008); Girisha et al. (2010); Isloor et al. (2009, 2010); Shobhitha et al. (2013). For related structures, see: Shahani, Fun, Ragavan et al. (2011); Shahani, Fun, Shetty et al. (2011); Prasath et al. (2011).

Experimental top

The title compound was prepared by refluxing a mixture of 5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-carboxaldehyde (0.1 mol) and 4-chloro phenol (0.1 mol) in 10 ml of dimethyl sulfoxide. To this solution, 0.1 mol of potassium hydroxide was added. The reaction mixture was refluxed for 3 hrs and then it was cooled to room temperature and poured to crushed ice. The solid product that separated was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from slow evaporation of ethanol.

Refinement top

All the H atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
5-(4-Chlorophenoxy)-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C17H13ClN2O2F(000) = 648
Mr = 312.74Dx = 1.373 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2501 reflections
a = 9.1016 (7) Åθ = 4.0–64.4°
b = 7.5298 (6) ŵ = 2.31 mm1
c = 22.1242 (16) ÅT = 296 K
β = 93.908 (3)°Block, brown
V = 1512.7 (2) Å30.23 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2501 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode2314 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.041
Detector resolution: 18.4 pixels mm-1θmax = 64.5°, θmin = 4.0°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 38
Tmin = 0.619, Tmax = 0.643l = 2525
9744 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5076P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2501 reflectionsΔρmax = 0.25 e Å3
200 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0171 (10)
Crystal data top
C17H13ClN2O2V = 1512.7 (2) Å3
Mr = 312.74Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.1016 (7) ŵ = 2.31 mm1
b = 7.5298 (6) ÅT = 296 K
c = 22.1242 (16) Å0.23 × 0.22 × 0.21 mm
β = 93.908 (3)°
Data collection top
Bruker X8 Proteum
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2314 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.643Rint = 0.041
9744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
2501 reflectionsΔρmin = 0.38 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33674 (5)0.67384 (7)0.29951 (2)0.0525 (2)
O10.96938 (13)0.67414 (15)0.37256 (6)0.0417 (4)
O20.96678 (16)0.16557 (19)0.27222 (7)0.0579 (5)
N11.15356 (14)0.51714 (19)0.42604 (6)0.0354 (4)
N21.23196 (16)0.3599 (2)0.42482 (7)0.0420 (5)
C10.81860 (18)0.6650 (2)0.35492 (7)0.0335 (5)
C20.72891 (19)0.5340 (3)0.37544 (8)0.0419 (5)
C30.58011 (19)0.5360 (3)0.35785 (8)0.0417 (5)
C40.52407 (19)0.6712 (2)0.32108 (7)0.0378 (5)
C50.6139 (2)0.8024 (2)0.30129 (8)0.0438 (6)
C60.7637 (2)0.8000 (2)0.31799 (8)0.0403 (6)
C71.04684 (16)0.5223 (2)0.38079 (7)0.0332 (5)
C81.05021 (18)0.3640 (2)0.34914 (7)0.0354 (5)
C91.16849 (19)0.2680 (2)0.37941 (8)0.0398 (5)
C100.9588 (2)0.3101 (3)0.29611 (8)0.0407 (6)
C111.20153 (18)0.6520 (2)0.46814 (7)0.0336 (5)
C121.3510 (2)0.6767 (2)0.47974 (8)0.0407 (6)
C131.4008 (2)0.8051 (3)0.52092 (9)0.0488 (6)
C141.3028 (2)0.9086 (3)0.54945 (9)0.0533 (7)
C151.1529 (2)0.8822 (3)0.53819 (8)0.0495 (6)
C161.10095 (19)0.7530 (2)0.49751 (7)0.0404 (5)
C171.2243 (2)0.0881 (3)0.36473 (11)0.0592 (7)
H02A1.304800.057400.393100.0890*
H20.768000.445100.400900.0500*
H02B1.257400.088400.324400.0890*
H30.518500.447000.370700.0500*
H02C1.146700.002700.367200.0890*
H50.574300.892900.276700.0530*
H60.825600.887700.304500.0480*
H100.890200.390800.279400.0490*
H121.417700.607600.460100.0490*
H131.501500.821400.529300.0590*
H141.336900.996600.576400.0640*
H151.086600.951500.558000.0590*
H161.000300.734400.490100.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0314 (3)0.0597 (4)0.0649 (3)0.0089 (2)0.0083 (2)0.0045 (2)
O10.0335 (6)0.0355 (7)0.0536 (7)0.0015 (5)0.0141 (5)0.0023 (5)
O20.0543 (9)0.0558 (9)0.0619 (9)0.0033 (6)0.0090 (7)0.0195 (7)
N10.0304 (7)0.0367 (8)0.0378 (7)0.0046 (6)0.0069 (5)0.0024 (6)
N20.0365 (8)0.0382 (8)0.0497 (8)0.0084 (6)0.0094 (6)0.0035 (6)
C10.0294 (8)0.0379 (9)0.0321 (8)0.0039 (6)0.0057 (6)0.0005 (6)
C20.0382 (9)0.0447 (10)0.0418 (9)0.0044 (8)0.0038 (7)0.0129 (7)
C30.0342 (9)0.0454 (10)0.0456 (9)0.0018 (7)0.0038 (7)0.0068 (8)
C40.0316 (9)0.0442 (10)0.0368 (8)0.0072 (7)0.0034 (7)0.0030 (7)
C50.0423 (10)0.0432 (10)0.0445 (9)0.0091 (8)0.0071 (8)0.0099 (8)
C60.0390 (10)0.0379 (10)0.0435 (9)0.0020 (7)0.0014 (7)0.0076 (7)
C70.0258 (7)0.0365 (9)0.0364 (8)0.0000 (6)0.0044 (6)0.0037 (7)
C80.0302 (8)0.0366 (9)0.0386 (8)0.0034 (7)0.0030 (6)0.0003 (7)
C90.0340 (9)0.0393 (10)0.0453 (9)0.0013 (7)0.0021 (7)0.0040 (7)
C100.0360 (9)0.0442 (11)0.0409 (9)0.0062 (7)0.0037 (7)0.0020 (8)
C110.0350 (9)0.0340 (9)0.0308 (8)0.0012 (6)0.0042 (6)0.0031 (6)
C120.0340 (9)0.0490 (11)0.0386 (9)0.0006 (7)0.0020 (7)0.0009 (7)
C130.0440 (10)0.0539 (12)0.0468 (10)0.0090 (9)0.0097 (8)0.0019 (8)
C140.0658 (13)0.0454 (12)0.0467 (10)0.0040 (9)0.0104 (9)0.0069 (8)
C150.0623 (12)0.0430 (11)0.0429 (9)0.0136 (9)0.0021 (8)0.0035 (8)
C160.0360 (9)0.0432 (10)0.0412 (9)0.0062 (7)0.0023 (7)0.0021 (8)
C170.0530 (12)0.0482 (12)0.0741 (13)0.0116 (10)0.0122 (10)0.0135 (10)
Geometric parameters (Å, º) top
Cl1—C41.7390 (18)C11—C161.386 (2)
O1—C11.403 (2)C12—C131.384 (3)
O1—C71.3490 (19)C13—C141.370 (3)
O2—C101.214 (3)C14—C151.384 (3)
N1—N21.384 (2)C15—C161.386 (3)
N1—C71.347 (2)C2—H20.9300
N1—C111.426 (2)C3—H30.9300
N2—C91.320 (2)C5—H50.9300
C1—C21.377 (3)C6—H60.9300
C1—C61.377 (2)C10—H100.9300
C2—C31.384 (2)C12—H120.9300
C3—C41.379 (3)C13—H130.9300
C4—C51.373 (2)C14—H140.9300
C5—C61.388 (3)C15—H150.9300
C7—C81.384 (2)C16—H160.9300
C8—C91.425 (2)C17—H02A0.9600
C8—C101.449 (2)C17—H02B0.9600
C9—C171.490 (3)C17—H02C0.9600
C11—C121.380 (2)
C1—O1—C7119.23 (12)C13—C14—C15119.99 (19)
N2—N1—C7110.91 (13)C14—C15—C16120.39 (18)
N2—N1—C11119.12 (13)C11—C16—C15118.86 (16)
C7—N1—C11129.64 (14)C1—C2—H2120.00
N1—N2—C9105.30 (13)C3—C2—H2120.00
O1—C1—C2122.29 (14)C2—C3—H3120.00
O1—C1—C6115.95 (14)C4—C3—H3120.00
C2—C1—C6121.69 (16)C4—C5—H5120.00
C1—C2—C3119.37 (18)C6—C5—H5120.00
C2—C3—C4119.31 (18)C1—C6—H6121.00
Cl1—C4—C3119.12 (13)C5—C6—H6121.00
Cl1—C4—C5119.89 (13)O2—C10—H10118.00
C3—C4—C5121.00 (16)C8—C10—H10118.00
C4—C5—C6120.08 (15)C11—C12—H12120.00
C1—C6—C5118.54 (15)C13—C12—H12120.00
O1—C7—N1117.94 (14)C12—C13—H13120.00
O1—C7—C8133.72 (14)C14—C13—H13120.00
N1—C7—C8108.15 (13)C13—C14—H14120.00
C7—C8—C9103.96 (14)C15—C14—H14120.00
C7—C8—C10128.28 (16)C14—C15—H15120.00
C9—C8—C10127.72 (15)C16—C15—H15120.00
N2—C9—C8111.66 (14)C11—C16—H16121.00
N2—C9—C17120.29 (16)C15—C16—H16121.00
C8—C9—C17128.05 (16)C9—C17—H02A109.00
O2—C10—C8123.73 (18)C9—C17—H02B109.00
N1—C11—C12118.14 (14)C9—C17—H02C109.00
N1—C11—C16120.96 (14)H02A—C17—H02B110.00
C12—C11—C16120.89 (15)H02A—C17—H02C109.00
C11—C12—C13119.43 (16)H02B—C17—H02C109.00
C12—C13—C14120.43 (17)
C7—O1—C1—C236.1 (2)C2—C3—C4—C50.6 (3)
C7—O1—C1—C6146.92 (15)Cl1—C4—C5—C6179.47 (13)
C1—O1—C7—N1143.39 (14)C3—C4—C5—C60.3 (3)
C1—O1—C7—C842.4 (2)C4—C5—C6—C10.6 (2)
C7—N1—N2—C91.81 (18)O1—C7—C8—C9174.01 (17)
C11—N1—N2—C9175.88 (14)O1—C7—C8—C103.9 (3)
N2—N1—C7—O1174.08 (13)N1—C7—C8—C90.60 (17)
N2—N1—C7—C81.51 (18)N1—C7—C8—C10178.50 (16)
C11—N1—C7—O10.8 (2)C7—C8—C9—N20.55 (19)
C11—N1—C7—C8174.78 (15)C7—C8—C9—C17179.41 (17)
N2—N1—C11—C1237.2 (2)C10—C8—C9—N2177.37 (17)
N2—N1—C11—C16141.54 (15)C10—C8—C9—C171.5 (3)
C7—N1—C11—C12135.63 (17)C7—C8—C10—O2177.79 (18)
C7—N1—C11—C1645.7 (2)C9—C8—C10—O24.8 (3)
N1—N2—C9—C81.42 (19)N1—C11—C12—C13179.23 (16)
N1—N2—C9—C17179.62 (16)C16—C11—C12—C130.5 (2)
O1—C1—C2—C3177.88 (16)N1—C11—C16—C15179.80 (15)
C6—C1—C2—C31.0 (3)C12—C11—C16—C151.1 (2)
O1—C1—C6—C5177.13 (15)C11—C12—C13—C140.8 (3)
C2—C1—C6—C50.1 (3)C12—C13—C14—C151.5 (3)
C1—C2—C3—C41.3 (3)C13—C14—C15—C160.9 (3)
C2—C3—C4—Cl1179.59 (14)C14—C15—C16—C110.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.503 (2)171
C2—H2···Cgii0.932.633.476 (2)152
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.503 (2)171.00
C2—H2···Cgii0.932.633.476 (2)152.00
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors are thankful to the IOE and UPE, University of Mysore, for providing the single-crystal X-ray diffraction facility and for the financial support. VN is grateful to the UGC for the award of an RFSMS Fellowship. RD acknowledges the UGC, New Delhi, for financial support under the Major Research Project Scheme [UGC MRP No. F.41–882/2012 (SR) dated 01/07/2012].

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree. (2010). Eur. J. Med. Chem. 45, 4640–4644.
First citationIsloor, A. M., Kalluraya, B. & Pai, S. K. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science CrossRef PubMed CAS
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2650.  Web of Science CSD CrossRef IUCr Journals
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Venkatesh, M. (2011). Acta Cryst. E67, o475.  Web of Science CSD CrossRef IUCr Journals
First citationShahani, T., Fun, H.-K., Shetty, S. & Kalluraya, B. (2011). Acta Cryst. E67, o2646.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShobhitha, S., Kalluraya, B., Nithinchandra, B. M., Joshi, C. G., Joshi, H. & Nidavani, R. B. (2013). Indian J. Heterocycl. Chem. 23, 33–38.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds