[Journal logo]

Volume 70 
Part 5 
Pages o625-o626  
May 2014  

Received 1 March 2014
Accepted 25 April 2014
Online 30 April 2014

Key indicators
Single-crystal X-ray study
T = 123 K
Mean [sigma](C-C) = 0.002 Å
Disorder in main residue
R = 0.060
wR = 0.178
Data-to-parameter ratio = 12.1
Details
Open access

Four-layered [3.3]meta­cyclo­phane with ethene­tetra­carbo­nitrile

aDepartment of Chemistry, Faculty of Education and Welfare Science, Oita University, 700 Dannoharu, Oita 870-1192, Japan,bInternational Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, and cInstitute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Correspondence e-mail: mshiba@oita-u.ac.jp

The title complex C42H48·2C6N4 {systematic name: hepta­cyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]do­tetra­conta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodeca­ene-ethene­tetra­carbo­nitrile (1/2)}, consisting of four-layered [3.3]meta­cyclo­phane (MCP) with two tetra­cyano­ethyl­ene (TCNE) mol­ecules, was grown from a mixture of MCP and TCNE in chloro­form solution. The four-layered [3.3]MCP has an S-shaped structure in which three [3.3]MCP moieties take syn-(chair-boat), anti-(chair-boat) and syn-(chair-boat) conformations. The two outer [3.3]MCP moieties with syn geometry contain benzene rings with a tilt of 32.95 (7)°. The central [3.3]MCP moiety has an anti geometry, in which the two benzene rings are oriented parallel to each other at a transannular distance of 2.31 Å. The TCNE mol­ecules are stacked on either side of the outer [3.3]MCP units at a distance of 3.19 Å on one side and 3.24 Å on the other, and showed 0.80:0.20 and 0.44:0.56 disorder, respectively.

Related literature

For the previously reported C42H48·C6N4 (1:1) complex, see: Shibahara et al. (2011a[Shibahara, M., Watanabe, M., Chan, Y., Goto, K. & Shinmyozu, T. (2011a). Tetrahedron Lett. 52, 3371-3375.]). For the free ligand C42H48, see: Shibahara et al. (2007[Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865-2877.]). For multilayered [3.3]para­cyclo­phanes, see: Shibahara et al. (2008[Shibahara, M., Watanabe, M., Iwanaga, T., Matsumoto, T., Ideta, K. & Shinmyozu, T. (2008). J. Org. Chem. 73, 4433-4442.], 2011a[Shibahara, M., Watanabe, M., Chan, Y., Goto, K. & Shinmyozu, T. (2011a). Tetrahedron Lett. 52, 3371-3375.],b[Shibahara, M., Watanabe, M., Chan, Y. & Shinmyozu, T. (2011b). Tetrahedron Lett. 52, 5012-5015.]). For cyclo­phanes, see: Vögtle (1993[Vögtle, F. (1993). In Cyclophane Chemistry. England: John Wiley & Sons Ltd.]).

[Scheme 1]

Experimental

Crystal data
  • C42H48·2C6N4

  • Mr = 809.03

  • Triclinic, [P \overline 1]

  • a = 9.563 (3) Å

  • b = 10.101 (4) Å

  • c = 11.679 (4) Å

  • [alpha] = 96.365 (14)°

  • [beta] = 99.134 (13)°

  • [gamma] = 107.683 (13)°

  • V = 1045.9 (6) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 0.08 mm-1

  • T = 123 K

  • 0.35 × 0.16 × 0.09 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 17470 measured reflections

  • 4775 independent reflections

  • 4141 reflections with F2 > 2[sigma](F2)

  • Rint = 0.050

Refinement
  • R[F2 > 2[sigma](F2)] = 0.060

  • wR(F2) = 0.178

  • S = 1.00

  • 4775 reflections

  • 394 parameters

  • Only H-atom coordinates refined

  • [Delta][rho]max = 0.80 e Å-3

  • [Delta][rho]min = -0.50 e Å-3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXD (Schneider & Sheldrick, 2002[Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku, Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.


Supporting information for this paper is available from the IUCr electronic archives (Reference: GW2145 ).


Acknowledgements

This work was partially supported by a Grant-in-Aid for Science Research (C 25410050) from the Japan Society for the Promotion of Science (JSPS), Japan, and was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (IMCE, Kyushu University). MW thanks the World Premier Inter­national Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Japan.

References

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku (2010). CrystalStructure. Rigaku, Corporation, Tokyo, Japan.
Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779.  [Web of Science] [CrossRef] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Shibahara, M., Watanabe, M., Chan, Y., Goto, K. & Shinmyozu, T. (2011a). Tetrahedron Lett. 52, 3371-3375.  [CrossRef] [ChemPort]
Shibahara, M., Watanabe, M., Chan, Y. & Shinmyozu, T. (2011b). Tetrahedron Lett. 52, 5012-5015.  [CrossRef] [ChemPort]
Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865-2877.  [CrossRef] [PubMed] [ChemPort]
Shibahara, M., Watanabe, M., Iwanaga, T., Matsumoto, T., Ideta, K. & Shinmyozu, T. (2008). J. Org. Chem. 73, 4433-4442.  [CrossRef] [PubMed] [ChemPort]
Vögtle, F. (1993). In Cyclophane Chemistry. England: John Wiley & Sons Ltd.


Acta Cryst (2014). E70, o625-o626   [ doi:10.1107/S1600536814009362 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.