organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-Di­phenyl­methyl-4-(3-phenyl­prop-2-en­yl)piperazine

aVittal Mallya Scientific Research Foundation, #94/3, 23rd Cross, 29th Main, BTM II Stage, Bangalore 560 076, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 9 April 2014; accepted 12 April 2014; online 18 April 2014)

In the title compound, C26H28N2, the piperazine group adopts a chair conformation with the exocyclic N—C bonds in equatorial orientations. The dihedral angle between the geminal benzene rings is 80.46 (12)° and the C=C—C—N torsion angle is 145.9 (2)°. In the crystal, weak C—H⋯π inter­actions link the mol­ecules into [100] chains.

Related literature

For the use of cinnerizine as an anti­histamine, see: Paton & Webster (1985[Paton, D. M. & Webster, D. R. (1985). Clin. Pharmacokinet., 10, 477-497.]). For synthetic methods of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines, see: Cignarella & Testa (1968[Cignarella, G. & Testa, E. V. J. (1968). Med. Chem. 11, 612-615.]). For the synthesis of the Z-isomer of cinnerizine, see: Shivaprakash & Chandrasekara Reddy (2014[Shivaprakash, S. & Chandrasekara Reddy, G. (2014). Synth. Commun. 44, 600-609.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28N2

  • Mr = 368.50

  • Monoclinic, P n

  • a = 8.7823 (3) Å

  • b = 9.6068 (3) Å

  • c = 12.4894 (4) Å

  • β = 94.834 (3)°

  • V = 1049.97 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 173 K

  • 0.42 × 0.38 × 0.32 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.907, Tmax = 1.000

  • 6399 measured reflections

  • 3316 independent reflections

  • 3177 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.05

  • 3316 reflections

  • 254 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack parameter determined using 1186 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.1 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cg1i 0.95 2.70 3.629 (3) 164
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Cinnerizine: (E)-1-(Diphenyl)methyl)-4-(3-phenyl-2-propenyl)piperazine is marketed as stugeron which is used as antihistamine (Paton & Webster, 1985). Because of greater biological importance of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines, several synthetic methods are described (Cignarella & Testa, 1968). But only recently the synthesis of (Z)-1-(Diphenylmethyl)-4-(3-phenyl-2-propenyl)piperazine is reported (Shivaprakash & Chandrasekara Reddy, 2014).

The title compound, C26H28N2, (I), is a close analogue of an existing drug viz., Cinnarizine, which has (E) geometry. We have prepared for the first time the (Z) isomer to study the structure activity relationship. However there is no report of any crystallographic data for this molecule so far. Hence this study was performed to confirm its structure. This compound exists as solid in free base form which could be crystallized easily. In continuation of our work in this area, we report here the crystal structure of (I).

In (I), the piperazine group adopts a slightly distorted chair conformation (puckering parameters Q, θ, and ϕ = 0.597 (2)Å, 3.95 (19)° and 168 (3)°, respectively (Fig. 1). The dihedral angles between the mean planes of the two methyl diphenyl groups (C15–C20 and C21–C26) with that of the 2-propenyl phenyl group (C8–C13) are 35.2 (1)° and 45.8 (8)°, respectively. The two methyl phenyl groups are separated by 80.4 (6)° with respect to each other.

Related literature top

For the use of cinnerizine as an antihistamine, see: Paton & Webster (1985). For synthetic methods of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines, see: Cignarella & Testa (1968). For the synthesis of the Z-isomer of cinnerizine, see: Shivaprakash & Chandrasekara Reddy (2014).

Experimental top

To a solution of 1-benzhydryl-4-(2-acetaldehyde) piperazine (5.0 g, 17.0 mmol) in dichloromethane (50 ml) under N2 atmosphere was added benzyltriphenyl phosphonium chloride (6.9 g, 17.9 mmol). The mixture was cooled to 278°K and t-BuOK (4.6 g, 41.3 mmol) was added under stirring. After completion, the reaction mass was quenched into water (100 ml). The organic layer was separated, dried over anhydrous sodium sulphate and concentrated under vacuum which was then subjected to column chromatography over silica gel with a EtOAc/Hexane mixture to afford the pure form of (Z)-1-benzhydrl-4-cinnamylpiperazine which was crystallized using absolute ethanol, white solid, mp: 363-365 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2)times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C26H28N2, showing 30% probability displacement ellipsoids.
(Z)-1-Diphenylmethyl-4-(3-phenylprop-2-enyl)piperazine top
Crystal data top
C26H28N2F(000) = 396
Mr = 368.50Dx = 1.166 Mg m3
Monoclinic, PnCu Kα radiation, λ = 1.54184 Å
a = 8.7823 (3) ÅCell parameters from 3666 reflections
b = 9.6068 (3) Åθ = 3.6–71.1°
c = 12.4894 (4) ŵ = 0.52 mm1
β = 94.834 (3)°T = 173 K
V = 1049.97 (6) Å3Irregular, colourless
Z = 20.42 × 0.38 × 0.32 mm
Data collection top
Agilent Eos Gemini
diffractometer
3316 independent reflections
Radiation source: Enhance (Cu) X-ray Source3177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.0416 pixels mm-1θmax = 71.0°, θmin = 4.6°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 119
Tmin = 0.907, Tmax = 1.000l = 1514
6399 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0592P)2 + 0.0586P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.096Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.14 e Å3
3316 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
254 parametersExtinction coefficient: 0.0072 (12)
2 restraintsAbsolute structure: Flack parameter determined using 1186 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (4)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C26H28N2V = 1049.97 (6) Å3
Mr = 368.50Z = 2
Monoclinic, PnCu Kα radiation
a = 8.7823 (3) ŵ = 0.52 mm1
b = 9.6068 (3) ÅT = 173 K
c = 12.4894 (4) Å0.42 × 0.38 × 0.32 mm
β = 94.834 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3177 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 1.000Rint = 0.027
6399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.13 e Å3
S = 1.05Δρmin = 0.14 e Å3
3316 reflectionsAbsolute structure: Flack parameter determined using 1186 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
254 parametersAbsolute structure parameter: 0.1 (4)
2 restraints
Special details top

Experimental. 1H NMR: δ 7.10 - 7.42 (m, 15 H, Ar-H), 6.55 (d, J =12.0 Hz, 1 H), 5.77 (ddd, J =12.0, 6.6 Hz, 1 H), 4.22 (s, 1 H), 3.28 (dd, J = 6.6, 1.80 Hz, 2 H), 2.46 (bs, 8 H). 13C NMR: δ 142.8, 137.1, 131.6, 129.5, 128.9, 128.4, 128.1, 127.9, 126.9, 126.8, 76.2, 56.2, 53.5, 51.9. HRMS calculated for C26H28N2 [M+H] + 369.2331; found 369.2335.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5869 (2)0.85143 (18)0.65925 (14)0.0334 (4)
N20.72189 (19)0.64457 (18)0.80568 (14)0.0305 (4)
C10.7507 (2)0.8187 (2)0.66743 (17)0.0328 (5)
H1A0.80890.90240.64920.039*
H1B0.77030.74470.61520.039*
C20.8049 (2)0.7707 (2)0.77981 (17)0.0340 (5)
H2A0.91590.75120.78410.041*
H2B0.78670.84480.83230.041*
C30.5597 (3)0.6811 (2)0.80277 (18)0.0359 (5)
H3A0.54520.75570.85560.043*
H3B0.50010.59880.82250.043*
C40.5024 (2)0.7302 (2)0.69132 (17)0.0344 (5)
H4A0.51320.65390.63920.041*
H4B0.39250.75390.69030.041*
C50.5349 (3)0.8889 (2)0.54764 (18)0.0377 (5)
H5A0.42260.90180.54140.045*
H5B0.55920.81230.49900.045*
C60.6101 (3)1.0202 (2)0.5143 (2)0.0442 (6)
H60.63071.08810.56890.053*
C70.6514 (3)1.0529 (2)0.4176 (2)0.0459 (6)
H70.70401.13860.41170.055*
C80.6241 (3)0.9702 (2)0.31837 (19)0.0385 (5)
C90.4864 (3)0.9022 (2)0.29280 (18)0.0377 (5)
H90.40930.90510.34180.045*
C100.4595 (3)0.8300 (2)0.19678 (19)0.0448 (6)
H100.36380.78520.18060.054*
C110.5692 (4)0.8225 (3)0.1250 (2)0.0551 (7)
H110.55010.77230.05980.066*
C120.7067 (4)0.8881 (3)0.1485 (2)0.0614 (8)
H120.78350.88240.09940.074*
C130.7345 (3)0.9627 (3)0.2430 (2)0.0522 (7)
H130.82941.00950.25720.063*
C140.7777 (2)0.5848 (2)0.91021 (16)0.0321 (5)
H140.75640.65230.96810.039*
C150.6962 (2)0.4481 (2)0.93040 (19)0.0370 (5)
C160.6542 (3)0.3558 (3)0.8466 (2)0.0465 (6)
H160.67030.38100.77490.056*
C170.5894 (3)0.2279 (3)0.8667 (3)0.0617 (8)
H170.56250.16590.80890.074*
C180.5639 (3)0.1902 (3)0.9704 (3)0.0702 (10)
H180.51830.10310.98420.084*
C190.6051 (3)0.2801 (4)1.0533 (3)0.0696 (10)
H190.58920.25391.12490.083*
C200.6700 (3)0.4093 (3)1.0340 (2)0.0496 (6)
H200.69620.47081.09210.060*
C210.9488 (2)0.5561 (2)0.91718 (17)0.0304 (4)
C221.0405 (3)0.5915 (2)1.00883 (18)0.0364 (5)
H220.99790.64121.06490.044*
C231.1937 (3)0.5551 (3)1.0193 (2)0.0433 (6)
H231.25530.57941.08280.052*
C241.2572 (3)0.4838 (2)0.9382 (2)0.0416 (6)
H241.36220.45850.94570.050*
C251.1672 (3)0.4492 (3)0.8459 (2)0.0433 (5)
H251.21020.40010.78980.052*
C261.0146 (3)0.4860 (2)0.83531 (19)0.0389 (5)
H260.95380.46310.77120.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0309 (10)0.0336 (8)0.0341 (9)0.0054 (7)0.0063 (7)0.0034 (7)
N20.0229 (9)0.0342 (8)0.0337 (9)0.0008 (7)0.0025 (7)0.0018 (7)
C10.0289 (11)0.0311 (10)0.0377 (11)0.0010 (8)0.0015 (9)0.0001 (8)
C20.0263 (11)0.0351 (10)0.0392 (11)0.0010 (8)0.0061 (8)0.0001 (9)
C30.0265 (11)0.0424 (11)0.0388 (11)0.0038 (8)0.0015 (9)0.0017 (9)
C40.0242 (10)0.0393 (10)0.0386 (12)0.0050 (8)0.0039 (8)0.0047 (9)
C50.0372 (13)0.0371 (11)0.0367 (12)0.0065 (9)0.0089 (9)0.0044 (8)
C60.0520 (16)0.0312 (10)0.0456 (13)0.0043 (10)0.0184 (11)0.0026 (9)
C70.0510 (16)0.0298 (10)0.0540 (15)0.0028 (10)0.0134 (12)0.0067 (9)
C80.0442 (14)0.0277 (9)0.0427 (12)0.0041 (9)0.0026 (10)0.0105 (8)
C90.0391 (13)0.0358 (11)0.0376 (11)0.0072 (9)0.0007 (9)0.0030 (9)
C100.0541 (16)0.0383 (11)0.0403 (12)0.0057 (10)0.0061 (11)0.0019 (9)
C110.081 (2)0.0448 (13)0.0399 (14)0.0096 (13)0.0088 (13)0.0032 (10)
C120.081 (2)0.0510 (14)0.0570 (16)0.0110 (15)0.0313 (16)0.0143 (13)
C130.0481 (16)0.0423 (12)0.0671 (17)0.0029 (11)0.0097 (12)0.0179 (12)
C140.0285 (11)0.0376 (10)0.0298 (10)0.0043 (9)0.0007 (8)0.0001 (8)
C150.0217 (10)0.0467 (12)0.0428 (12)0.0061 (8)0.0044 (9)0.0095 (9)
C160.0382 (14)0.0439 (12)0.0590 (15)0.0051 (10)0.0139 (11)0.0017 (11)
C170.0424 (16)0.0480 (14)0.096 (2)0.0056 (12)0.0120 (15)0.0047 (14)
C180.0332 (14)0.0609 (17)0.116 (3)0.0057 (13)0.0018 (16)0.042 (2)
C190.0252 (13)0.106 (3)0.077 (2)0.0017 (14)0.0016 (12)0.057 (2)
C200.0233 (12)0.0780 (17)0.0469 (14)0.0040 (11)0.0009 (10)0.0215 (13)
C210.0273 (11)0.0285 (9)0.0345 (10)0.0011 (7)0.0016 (8)0.0052 (8)
C220.0364 (12)0.0367 (10)0.0349 (11)0.0057 (9)0.0034 (9)0.0027 (9)
C230.0337 (12)0.0505 (12)0.0429 (13)0.0116 (10)0.0136 (10)0.0092 (10)
C240.0233 (11)0.0470 (12)0.0533 (14)0.0029 (9)0.0032 (10)0.0184 (10)
C250.0317 (12)0.0492 (13)0.0493 (13)0.0060 (9)0.0043 (10)0.0017 (10)
C260.0287 (12)0.0482 (12)0.0385 (11)0.0041 (9)0.0047 (9)0.0049 (9)
Geometric parameters (Å, º) top
N1—C11.467 (3)C11—C121.372 (5)
N1—C41.456 (3)C12—H120.9500
N1—C51.475 (3)C12—C131.385 (4)
N2—C21.464 (3)C13—H130.9500
N2—C31.465 (3)C14—H141.0000
N2—C141.472 (3)C14—C151.527 (3)
C1—H1A0.9900C14—C211.523 (3)
C1—H1B0.9900C15—C161.397 (4)
C1—C21.516 (3)C15—C201.384 (3)
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900C16—C171.386 (4)
C3—H3A0.9900C17—H170.9500
C3—H3B0.9900C17—C181.381 (5)
C3—C41.515 (3)C18—H180.9500
C4—H4A0.9900C18—C191.373 (6)
C4—H4B0.9900C19—H190.9500
C5—H5A0.9900C19—C201.395 (5)
C5—H5B0.9900C20—H200.9500
C5—C61.499 (3)C21—C221.385 (3)
C6—H60.9500C21—C261.390 (3)
C6—C71.328 (4)C22—H220.9500
C7—H70.9500C22—C231.386 (3)
C7—C81.475 (3)C23—H230.9500
C8—C91.388 (3)C23—C241.380 (4)
C8—C131.409 (4)C24—H240.9500
C9—H90.9500C24—C251.382 (4)
C9—C101.388 (3)C25—H250.9500
C10—H100.9500C25—C261.381 (3)
C10—C111.372 (4)C26—H260.9500
C11—H110.9500
C1—N1—C5110.01 (17)C10—C11—H11120.3
C4—N1—C1109.22 (16)C10—C11—C12119.4 (3)
C4—N1—C5109.34 (17)C12—C11—H11120.3
C2—N2—C3107.32 (16)C11—C12—H12119.7
C2—N2—C14112.58 (16)C11—C12—C13120.6 (3)
C3—N2—C14111.44 (17)C13—C12—H12119.7
N1—C1—H1A109.4C8—C13—H13119.5
N1—C1—H1B109.4C12—C13—C8120.9 (3)
N1—C1—C2111.06 (18)C12—C13—H13119.5
H1A—C1—H1B108.0N2—C14—H14108.6
C2—C1—H1A109.4N2—C14—C15110.89 (17)
C2—C1—H1B109.4N2—C14—C21111.98 (17)
N2—C2—C1109.45 (17)C15—C14—H14108.6
N2—C2—H2A109.8C21—C14—H14108.6
N2—C2—H2B109.8C21—C14—C15107.97 (17)
C1—C2—H2A109.8C16—C15—C14121.3 (2)
C1—C2—H2B109.8C20—C15—C14120.2 (2)
H2A—C2—H2B108.2C20—C15—C16118.3 (2)
N2—C3—H3A109.6C15—C16—H16119.5
N2—C3—H3B109.6C17—C16—C15120.9 (3)
N2—C3—C4110.14 (18)C17—C16—H16119.5
H3A—C3—H3B108.1C16—C17—H17119.9
C4—C3—H3A109.6C18—C17—C16120.2 (3)
C4—C3—H3B109.6C18—C17—H17119.9
N1—C4—C3111.38 (18)C17—C18—H18120.3
N1—C4—H4A109.4C19—C18—C17119.3 (3)
N1—C4—H4B109.4C19—C18—H18120.3
C3—C4—H4A109.4C18—C19—H19119.5
C3—C4—H4B109.4C18—C19—C20120.9 (3)
H4A—C4—H4B108.0C20—C19—H19119.5
N1—C5—H5A109.4C15—C20—C19120.3 (3)
N1—C5—H5B109.4C15—C20—H20119.9
N1—C5—C6111.06 (18)C19—C20—H20119.9
H5A—C5—H5B108.0C22—C21—C14120.31 (19)
C6—C5—H5A109.4C22—C21—C26118.6 (2)
C6—C5—H5B109.4C26—C21—C14121.00 (19)
C5—C6—H6116.1C21—C22—H22119.7
C7—C6—C5127.8 (2)C21—C22—C23120.6 (2)
C7—C6—H6116.1C23—C22—H22119.7
C6—C7—H7116.6C22—C23—H23119.8
C6—C7—C8126.8 (2)C24—C23—C22120.3 (2)
C8—C7—H7116.6C24—C23—H23119.8
C9—C8—C7121.6 (2)C23—C24—H24120.2
C9—C8—C13117.2 (2)C23—C24—C25119.6 (2)
C13—C8—C7121.1 (2)C25—C24—H24120.2
C8—C9—H9119.5C24—C25—H25120.0
C10—C9—C8121.0 (2)C26—C25—C24120.1 (2)
C10—C9—H9119.5C26—C25—H25120.0
C9—C10—H10119.6C21—C26—H26119.6
C11—C10—C9120.8 (3)C25—C26—C21120.9 (2)
C11—C10—H10119.6C25—C26—H26119.6
N1—C1—C2—N260.7 (2)C9—C10—C11—C120.5 (4)
N1—C5—C6—C7145.9 (2)C10—C11—C12—C130.7 (4)
N2—C3—C4—N159.4 (2)C11—C12—C13—C81.5 (4)
N2—C14—C15—C1635.6 (3)C13—C8—C9—C100.0 (3)
N2—C14—C15—C20148.1 (2)C14—N2—C2—C1175.11 (17)
N2—C14—C21—C22135.90 (19)C14—N2—C3—C4174.99 (17)
N2—C14—C21—C2648.3 (3)C14—C15—C16—C17175.7 (2)
C1—N1—C4—C355.5 (2)C14—C15—C20—C19175.6 (2)
C1—N1—C5—C664.6 (2)C14—C21—C22—C23174.5 (2)
C2—N2—C3—C461.3 (2)C14—C21—C26—C25174.2 (2)
C2—N2—C14—C15175.90 (17)C15—C14—C21—C22101.7 (2)
C2—N2—C14—C2155.2 (2)C15—C14—C21—C2674.0 (3)
C3—N2—C2—C161.9 (2)C15—C16—C17—C180.7 (4)
C3—N2—C14—C1563.4 (2)C16—C15—C20—C190.9 (3)
C3—N2—C14—C21175.87 (17)C16—C17—C18—C190.8 (5)
C4—N1—C1—C256.3 (2)C17—C18—C19—C201.0 (4)
C4—N1—C5—C6175.45 (19)C18—C19—C20—C151.1 (4)
C5—N1—C1—C2176.29 (16)C20—C15—C16—C170.7 (4)
C5—N1—C4—C3175.89 (17)C21—C14—C15—C1687.5 (2)
C5—C6—C7—C84.0 (4)C21—C14—C15—C2088.9 (2)
C6—C7—C8—C940.9 (4)C21—C22—C23—C240.4 (3)
C6—C7—C8—C13142.3 (3)C22—C21—C26—C251.6 (3)
C7—C8—C9—C10177.0 (2)C22—C23—C24—C250.3 (3)
C7—C8—C13—C12178.2 (2)C23—C24—C25—C260.0 (3)
C8—C9—C10—C110.8 (3)C24—C25—C26—C210.9 (4)
C9—C8—C13—C121.2 (3)C26—C21—C22—C231.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg1i0.952.703.629 (3)164
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg1i0.952.703.629 (3)164
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We express our sincere thanks to Dr Anil Kush, Director, VMSRF, for his keen inter­est and support throughout this work. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCignarella, G. & Testa, E. V. J. (1968). Med. Chem. 11, 612–615.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaton, D. M. & Webster, D. R. (1985). Clin. Pharmacokinet., 10, 477–497.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivaprakash, S. & Chandrasekara Reddy, G. (2014). Synth. Commun. 44, 600–609.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds