metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m181-m182

Poly[[nona­aqua­bis­­(μ-5-hy­dr­oxy­benzene-1,3-di­carboxyl­ato)(5-hy­dr­oxy­benzene-1,3-di­carboxyl­ato)dicerium(III)] hexa­hydrate]

aINSA, UMR 6226, Institut des Sciences Chimiques de Rennes, 35 708 Rennes, France, and bUniversit Assane Seck de Ziguinchor, LCPM, BP 523 Ziguinchor, Senegal
*Correspondence e-mail: magatte.camara@univ-zig.sn

(Received 12 March 2014; accepted 7 April 2014; online 16 April 2014)

In the title coordination polymer, {[Ce2(C8H4O5)3(H2O)9]·6H2O}n, the asymmetric unit is formed by two CeIII atoms, three 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligands, nine coordinating water mol­ecules and six water mol­ecules of crystallization. The two CeIII atoms are bridged by 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligands acting in a bis-bidentate coordination mode, generating infinite chains along [101]. Both independent metal atoms are nine-coordinated, one by four O atoms from the carboxyl­ate groups of two bridging 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligands and five O atoms from water mol­ecules, generating a tricapped trigonal–prismatic geometry. The coordination around the second CeIII atom is similar, except that one of the water mol­ecules is replaced by an O atom from an additional 5-hy­droxy­benzene-1,3-di­carboxyl­ate ligand acting in a monodentate coordination mode and forming a capped square-anti­prismatic geometry.

Related literature

For background to this field of research, see: Daiguebonne et al. (1998[Daiguebonne, C., Gérault, Y., Guillou, O., Lecerf, A., Boubekeur, K., Batail, P., Kahn, M. & Kahn, O. (1998). J. Alloys Compd, 275-277, 50-53.]); Qiu et al. (2007[Qiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265-3271.]); Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]); Kerbellec et al. (2008[Kerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd, 451, 377-383.]); Jeon & Clérac (2012[Jeon, J. R. & Clérac, R. (2012). Dalton Trans. 41, 9569-9596.]); Calvez et al. (2008[Calvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 3997-4003.]); Binnemans (2009[Binnemans, K. (2009). Chem. Rev. 109, 4283-4374.]); Daiguebonne et al. (2008[Daiguebonne, C., Kerbellec, N., Gérault, Y. & Guillou, O. (2008). J. Alloys Compd, 451, 372-376.]); Freslon et al. (2014[Freslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217-1228.]). For previously reported crystal structures that involve 5-hy­droxy­benzene-1,3-di­carboxyl­ate, see: Ermer & Neudörfl (2001[Ermer, O. & Neudörfl, J. (2001). Chem. Eur. J. 7, 4961-4980.]); Lin et al. (2010[Lin, J. D., Wu, S. T., Li, Z. H. & Du, S. W. (2010). Dalton Trans. 39, 10719-10728.]); Xu & Li (2004[Xu, H. & Li, Y. (2004). J. Mol. Struct. 690, 137-143.]); Chen et al. (2012[Chen, M., Wang, C., Hu, M. & Liu, C. S. (2012). Inorg. Chem. Commun. 17, 104-107.]); Huang et al. (2008[Huang, Y., Tan, B. & Shao, M. (2008). J. Mol. Struct. 876, 211-217.]). For details concerning the synthesis, see: Henisch & Rustum (1970[Henisch, H. K. & Rustum, R. (1970). In Crystal Growth in Gels. The Pennsylvania State University Press.]); Henisch (1988[Henisch, H. K. (1988). In Crystals in Gels and Liesegang Rings. Cambridge University Press.]); Daiguebonne et al. (2003[Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015-1020.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce2(C8H4O5)3(H2O)9]·6H2O

  • Mr = 1090.82

  • Monoclinic, P 21

  • a = 10.7150 (3) Å

  • b = 11.1039 (2) Å

  • c = 16.3611 (4) Å

  • β = 100.975 (2)°

  • V = 1911.01 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.46 mm−1

  • T = 293 K

  • 0.14 × 0.05 × 0.04 mm

Data collection
  • Kappa CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.763, Tmax = 0.866

  • 26639 measured reflections

  • 8644 independent reflections

  • 7711 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.06

  • 8644 reflections

  • 506 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.46 e Å−3

  • Δρmin = −1.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4150 Friedel pairs

  • Absolute structure parameter: 0.166 (19)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

For more than a decade, our group has been involved in the synthesis of benzene-poly-carboxyl­ate lanthanide-based coordination polymers: (Daiguebonne et al., 1998), (Qiu et al., 2007); because of their great inter­est in gas storage: (Eddaoudi et al. 2002), (Kerbellec et al., 2008); molecular magnetism: (Jeon et al., 2012), (Calvez et al., 2008) or luminescence: (Binnemans, 2009), (Daiguebonne et al., 2008). In the frame of this work we have recently proved that lanthanide-based coordination polymers can exhibit original luminescence properties when a donor group is present in the vicinity of the lanthanide ion: (Freslon et al., 2014). Therefore we have undertaken the study of lanthanide-based coordination polymers that involves 5-hy­droxy­benzene-1,3-di­carboxyl­ate as ligand. This ligand has previously led to extended molecular networks in association with organic molecules: (Ermer & Neudörfl, 2001), transition metal ions: ( Lin et al., 2010) or lanthanide ions: (Xu & Li , 2004), (Chen et al., 2012), (Huang et al. , 2008). Previously reported lanthanide-based coordination polymers have been obtained by hydro­thermal methods. The structure described here has been obtained on the basis of single crystals that have grown in gel medium.

Experimental top

Synthesis and crystallization top

5-Hy­droxy­benzene-1,3-di­carb­oxy­lic acid was purchased from Alfa Aesar and used without further purification. Its di-sodium salt was prepared by addition of two equivalent of sodium hydroxide to an aqueous suspension of the acid. Then the obtained clear solution was evaporated to dryness. The resulting solid was suspended in a small amount of ethanol. The mixture was stirred and refluxed for 1 hour. Upon addition of eth­oxy­ethane, precipitation occurred. After filtration and drying the white powder of the di-sodium salt was obtained in 90% yield.

Hydrated cerium chloride was purchased from A.M.P.E.R.E Industrie and used without further purification. Tetra­methyl­orthosilicate (TMOS) was purchased from Acros Organics and jellified according to established procedures: (Henisch, 1988),( Henisch & Rustum, 1970), (Daiguebonne et al. ,2003). Dilute aqueous solutions (0.1 mol.L-1) of cerium (III) chloride and di-sodium 5-hy­droxy­benzene-1,3-di-carboxyl­ate were allowed to slowly diffuse through gel media in U-shaped tubes. After few weeks needle-like single crystals were obtained in the tubes that have been filled with a 7.5% gel (expressed in weight percent).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

H-atoms from water molecules have not been assigned and were thus not included in the refinement, but they were taken into account for the chemical formula sum, moiety, weight, as well as for the absorption coefficient and the number of electrons in the unit cell.

Results and discussion top

The crystal structure of [Ce2(C8H4O5)3(H2O)9,6H2O] can be described on the basis of chains molecular motifs that spread in the (a+c) direction. Each chain is constituted by an alternation of cerium ions bridged by 5-hy­droxy­benzene-1,3-di-carboxyl­ate ligands. There are two crystallographically independent cerium (III) ions in the asymmetric unit. Both are nine-coordinated. Ce1 is bound by four oxygen atoms from carboxyl­ate groups and five oxygen atoms from water molecules that form a tricapped trigonal prism. On the other hand, Ce2 is bound by five oxygen atoms from carboxyl­ate groups and four oxygen atoms from water molecules that form a capped square anti­prism. There are three crystallographically independent ligands in the asymmetric unit. Two out of the three bridge the metal ions in a bis-bidentate manner. A third ligand is only linked to the Ce2 atom in a monodentate fashion. Its second carboxyl­ate clip is not bound and point toward the inter-molecular motifs space (Figure 1). This is in agreement with the IR spectrum that shows no characteristic peak of any protonated carboxyl­ate group.

The short distances ( in the range 2.7–2.8 Å) between some oxygen atoms allow to assume that neighboring chains are held together by strong inter­molecular hydrogen bond inter­actions forming a double-chains molecular motif (Figure 2). Ligands that are bound in a unidentate fashion are pointing between the double-chains molecular motifs. Oxygen atoms from the free carboxyl­ate clip are involved, with coordination and crystallization water molecules, in a complex Hydrogen-bonds network that ensure the stability of the crystal packing.

Related literature top

For literature concerning this field of research see: Daiguebonne et al. (1998); Qiu et al. (2007); Eddaoudi et al. (2002); Kerbellec et al. (2008); Jeon et al. (2012); Calvez et al. (2008); Binnemans (2009); Daiguebonne et al. (2008); Freslon et al. (2014). For previously reported crystal structures that involve 5-hydroxybenzene-1,3-dicarboxylate see: Ermer & Neudörfl (2001); Lin et al. (2010); Xu & Li (2004); Chen et al. (2012); Huang et al. (2008). For details concerning the synthesis see: Henisch & Rustum (1970); Henisch (1988); Daiguebonne et al. (2003).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Extended asymmetric unit of the title compound. Displacement ellipsoids are drawn at a 50% probability level.
[Figure 2] Fig. 2. Projection view of molecular chains motif of {[Ce2(C8H4O5)3(H2O)9].6H2O}n. Yellow dotted lines symbolize assumed hydrogen-bonds (with inter-atomic distances between involved O atoms in the range 2.7–2.8 Å)
[Figure 3] Fig. 3. Projection view along the b axis of two neighboring double-chains molecular motifs of {[Ce2(C8H4O5)3(H2O)9].6H2O}n.
Poly[[nonaaquabis(µ-5-hydroxybenzene-1,3-dicarboxylato)(5-hydroxybenzene-1,3-dicarboxylato)dicerium(III)] hexahydrate] top
Crystal data top
[Ce2(C8H4O5)3(H2O)9]·6H2OF(000) = 1084
Mr = 1090.82Dx = 1.896 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 22389 reflections
a = 10.7150 (3) Åθ = 2.9–27.5°
b = 11.1039 (2) ŵ = 2.46 mm1
c = 16.3611 (4) ÅT = 293 K
β = 100.975 (2)°Needle, colourless
V = 1911.01 (8) Å30.14 × 0.05 × 0.04 mm
Z = 2
Data collection top
Kappa CCD
diffractometer
8644 independent reflections
Radiation source: Mo7711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ– and ω– scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(Blessing,1995)
h = 1313
Tmin = 0.763, Tmax = 0.866k = 1414
26639 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0416P)2 + 2.8811P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
8644 reflectionsΔρmax = 1.46 e Å3
506 parametersΔρmin = 1.28 e Å3
1 restraintAbsolute structure: Flack (1983), 4150 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.166 (19)
Crystal data top
[Ce2(C8H4O5)3(H2O)9]·6H2OV = 1911.01 (8) Å3
Mr = 1090.82Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7150 (3) ŵ = 2.46 mm1
b = 11.1039 (2) ÅT = 293 K
c = 16.3611 (4) Å0.14 × 0.05 × 0.04 mm
β = 100.975 (2)°
Data collection top
Kappa CCD
diffractometer
8644 independent reflections
Absorption correction: multi-scan
(Blessing,1995)
7711 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.866Rint = 0.040
26639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 1.46 e Å3
S = 1.06Δρmin = 1.28 e Å3
8644 reflectionsAbsolute structure: Flack (1983), 4150 Friedel pairs
506 parametersAbsolute structure parameter: 0.166 (19)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce010.41401 (3)0.24388 (2)0.933831 (18)0.02183 (10)
Ce020.09386 (3)0.17680 (2)0.436383 (18)0.01951 (9)
O10.2917 (4)0.1863 (6)0.4899 (3)0.0289 (10)
O20.1739 (6)0.3897 (5)0.4199 (4)0.0294 (13)
O30.0651 (4)0.2416 (6)0.2877 (3)0.0297 (11)
O40.1035 (5)0.3002 (4)0.4468 (3)0.0284 (11)
O50.1871 (5)0.0358 (5)0.4380 (3)0.0273 (12)
O60.0564 (5)0.0265 (5)0.3904 (4)0.0352 (13)
O70.0223 (5)0.0881 (5)0.5719 (3)0.0288 (12)
O80.0331 (4)0.2759 (5)0.5849 (3)0.0240 (11)
O90.3621 (7)0.3564 (5)0.5332 (3)0.076 (2)
O100.1659 (5)0.1474 (5)0.7003 (3)0.0383 (11)
O110.2278 (5)0.1263 (5)0.8207 (3)0.0458 (12)
O120.2563 (6)0.3228 (6)0.8491 (3)0.0482 (15)
HO120.27240.39170.83240.072*
O130.3158 (5)0.0346 (5)0.9375 (3)0.0313 (13)
O140.2395 (5)0.1407 (5)0.8273 (3)0.0317 (12)
O150.2116 (5)0.2613 (7)0.9923 (3)0.0389 (14)
O160.5582 (5)0.0896 (5)0.8858 (3)0.0355 (13)
O170.4364 (5)0.3130 (7)0.7868 (3)0.0346 (12)
O180.6140 (5)0.3617 (5)0.9463 (3)0.0369 (13)
O190.3268 (6)0.4551 (6)0.9146 (4)0.0363 (15)
O200.5302 (5)0.1566 (5)1.0706 (3)0.0321 (12)
O210.4675 (5)0.3431 (5)1.0802 (3)0.0275 (12)
O220.7420 (5)0.0683 (5)1.3243 (3)0.0334 (13)
O230.5883 (5)0.4408 (5)1.3876 (3)0.0323 (11)
HO230.55240.49411.35730.048*
O240.0790 (6)0.3571 (6)0.8987 (3)0.0546 (18)
HO240.04270.41370.87200.082*
C10.2907 (5)0.2074 (5)0.6356 (3)0.0264 (11)
C20.2621 (6)0.0885 (7)0.6513 (4)0.0267 (13)
H20.25820.03640.60730.032*
C30.2387 (5)0.0449 (5)0.7330 (4)0.0287 (12)
C40.2354 (7)0.1267 (7)0.7985 (5)0.0329 (16)
H40.21590.09980.85330.039*
C50.2607 (6)0.2469 (6)0.7822 (4)0.0321 (12)
C60.2887 (7)0.2889 (7)0.7012 (4)0.0299 (16)
H60.30600.37000.69050.036*
C70.3179 (6)0.2537 (6)0.5475 (4)0.0343 (13)
C80.2092 (5)0.0862 (5)0.7522 (4)0.0296 (12)
C90.0619 (5)0.1745 (9)0.7086 (4)0.0236 (12)
C100.1232 (6)0.0678 (7)0.7441 (4)0.0221 (15)
H100.13320.00230.71050.026*
C110.1682 (7)0.0623 (7)0.8300 (4)0.0252 (15)
C120.1521 (6)0.1620 (8)0.8803 (4)0.0292 (16)
H120.18230.15880.93750.035*
C130.0919 (7)0.2634 (9)0.8451 (4)0.0306 (15)
C140.0474 (6)0.2704 (8)0.7594 (4)0.0270 (15)
H140.00760.34030.73640.032*
C150.0151 (5)0.1807 (8)0.6173 (3)0.0198 (11)
C160.2435 (6)0.0420 (7)0.8667 (4)0.0236 (14)
C170.5721 (5)0.2448 (8)1.2077 (4)0.0210 (12)
C180.5608 (6)0.3459 (6)1.2559 (4)0.0247 (15)
H180.52580.41651.23100.030*
C190.6018 (6)0.3407 (7)1.3407 (4)0.0248 (14)
C200.6592 (6)0.2376 (8)1.3782 (4)0.0251 (13)
H200.68790.23481.43550.030*
C210.6734 (6)0.1383 (6)1.3289 (4)0.0218 (14)
C220.6282 (7)0.1436 (7)1.2435 (5)0.0279 (17)
H220.63650.07691.21060.033*
C230.7462 (6)0.0291 (6)1.3655 (4)0.0228 (14)
C240.5212 (5)0.2489 (8)1.1145 (4)0.0226 (12)
O0310.5264 (5)0.4338 (5)0.5427 (3)0.0466 (12)
O0390.4961 (6)0.1825 (6)0.6563 (4)0.0587 (16)
O0400.9555 (7)0.2265 (8)0.9363 (4)0.085 (2)
O0410.7364 (5)0.3758 (5)0.6657 (3)0.0506 (13)
O0430.0116 (9)0.4262 (7)0.8386 (5)0.087 (3)
O0620.6940 (12)0.4496 (7)0.8113 (5)0.129 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce010.0301 (2)0.0174 (2)0.01549 (19)0.00197 (15)0.00223 (15)0.00039 (15)
Ce020.02548 (18)0.01640 (19)0.01496 (18)0.00154 (14)0.00042 (14)0.00006 (14)
O10.034 (2)0.033 (3)0.021 (2)0.003 (2)0.0084 (19)0.005 (3)
O20.038 (3)0.018 (3)0.031 (3)0.001 (2)0.004 (2)0.001 (2)
O30.034 (2)0.034 (3)0.018 (2)0.001 (3)0.0010 (19)0.004 (3)
O40.033 (2)0.032 (3)0.020 (2)0.0107 (18)0.004 (2)0.0049 (19)
O50.032 (3)0.024 (3)0.021 (3)0.003 (2)0.006 (2)0.001 (2)
O60.042 (3)0.026 (3)0.042 (3)0.001 (2)0.016 (3)0.001 (2)
O70.041 (3)0.024 (3)0.018 (2)0.005 (2)0.001 (2)0.004 (2)
O80.033 (2)0.018 (3)0.019 (2)0.003 (2)0.0007 (19)0.002 (2)
O90.139 (6)0.057 (4)0.039 (3)0.063 (4)0.034 (3)0.019 (3)
O100.044 (3)0.038 (3)0.034 (2)0.013 (2)0.012 (2)0.002 (2)
O110.059 (3)0.050 (3)0.033 (2)0.021 (2)0.021 (2)0.015 (2)
O120.078 (4)0.038 (3)0.030 (3)0.001 (3)0.013 (3)0.012 (2)
O130.043 (3)0.025 (3)0.020 (3)0.006 (2)0.011 (2)0.007 (2)
O140.042 (3)0.026 (3)0.022 (3)0.005 (2)0.008 (2)0.006 (2)
O150.043 (3)0.045 (4)0.029 (3)0.003 (3)0.008 (2)0.002 (3)
O160.048 (3)0.026 (3)0.036 (3)0.002 (2)0.016 (3)0.002 (2)
O170.046 (3)0.036 (3)0.020 (2)0.003 (3)0.000 (2)0.001 (3)
O180.039 (3)0.039 (3)0.033 (3)0.012 (2)0.006 (2)0.010 (2)
O190.036 (3)0.028 (3)0.044 (4)0.009 (2)0.006 (3)0.010 (3)
O200.052 (3)0.019 (3)0.021 (3)0.010 (2)0.003 (2)0.003 (2)
O210.036 (3)0.023 (3)0.021 (2)0.005 (2)0.002 (2)0.002 (2)
O220.046 (3)0.026 (3)0.023 (3)0.009 (2)0.008 (2)0.007 (2)
O230.047 (3)0.025 (2)0.023 (2)0.010 (2)0.003 (2)0.0036 (19)
O240.085 (4)0.044 (4)0.029 (3)0.033 (3)0.005 (3)0.015 (3)
C10.028 (3)0.028 (3)0.024 (3)0.001 (2)0.009 (2)0.000 (2)
C20.028 (3)0.033 (4)0.018 (3)0.007 (3)0.003 (2)0.007 (2)
C30.030 (3)0.029 (3)0.028 (3)0.002 (2)0.008 (2)0.000 (2)
C40.037 (4)0.035 (4)0.027 (3)0.005 (3)0.008 (3)0.002 (3)
C50.038 (3)0.035 (3)0.024 (3)0.000 (3)0.009 (2)0.006 (2)
C60.038 (4)0.028 (4)0.025 (3)0.004 (3)0.010 (3)0.000 (3)
C70.043 (3)0.030 (3)0.031 (3)0.002 (3)0.010 (3)0.005 (3)
C80.030 (3)0.030 (3)0.031 (3)0.006 (2)0.011 (2)0.007 (2)
C90.025 (3)0.025 (3)0.019 (3)0.003 (3)0.001 (2)0.004 (4)
C100.026 (3)0.023 (4)0.014 (3)0.007 (3)0.005 (3)0.002 (3)
C110.028 (3)0.025 (4)0.022 (3)0.005 (3)0.001 (3)0.001 (3)
C120.036 (3)0.034 (4)0.015 (3)0.012 (3)0.002 (3)0.008 (3)
C130.040 (4)0.034 (4)0.016 (3)0.012 (4)0.000 (3)0.006 (3)
C140.026 (3)0.033 (4)0.019 (3)0.005 (3)0.005 (2)0.002 (3)
C150.017 (2)0.025 (3)0.016 (3)0.000 (3)0.001 (2)0.000 (3)
C160.028 (3)0.024 (4)0.017 (3)0.003 (3)0.001 (3)0.000 (3)
C170.023 (3)0.025 (3)0.014 (3)0.000 (3)0.001 (2)0.001 (3)
C180.030 (3)0.016 (4)0.028 (3)0.003 (2)0.005 (3)0.003 (3)
C190.032 (3)0.016 (3)0.026 (3)0.001 (3)0.004 (3)0.000 (3)
C200.031 (3)0.028 (3)0.015 (3)0.001 (3)0.003 (2)0.011 (3)
C210.024 (3)0.021 (4)0.020 (3)0.001 (2)0.003 (3)0.005 (3)
C220.037 (4)0.021 (4)0.026 (4)0.002 (3)0.008 (3)0.005 (3)
C230.028 (3)0.019 (4)0.020 (3)0.002 (3)0.002 (3)0.003 (3)
C240.030 (3)0.021 (3)0.015 (3)0.000 (3)0.001 (2)0.002 (3)
O0310.053 (3)0.040 (3)0.048 (3)0.014 (2)0.011 (2)0.002 (2)
O0390.073 (4)0.048 (4)0.050 (3)0.007 (3)0.001 (3)0.003 (3)
O0400.071 (4)0.132 (7)0.054 (4)0.040 (5)0.018 (3)0.030 (4)
O0410.056 (3)0.044 (3)0.054 (3)0.004 (2)0.018 (3)0.006 (3)
O0430.145 (7)0.058 (5)0.062 (4)0.016 (4)0.028 (5)0.019 (4)
O0620.292 (14)0.054 (5)0.071 (5)0.026 (6)0.112 (7)0.005 (4)
Geometric parameters (Å, º) top
Ce01—O182.486 (5)O23—HO230.8200
Ce01—O192.522 (6)O24—C131.385 (9)
Ce01—O162.530 (5)O24—HO240.8200
Ce01—O202.537 (5)C1—C21.368 (9)
Ce01—O152.539 (5)C1—C61.401 (9)
Ce01—O132.556 (6)C1—C71.506 (8)
Ce01—O142.570 (5)C2—C31.400 (8)
Ce01—O172.579 (5)C2—H20.9300
Ce01—O212.598 (5)C3—C41.400 (9)
Ce01—C242.961 (6)C3—C81.510 (8)
Ce01—C162.967 (7)C4—C51.378 (10)
Ce02—O12.445 (4)C4—H40.9300
Ce02—O42.498 (5)C5—C61.382 (10)
Ce02—O22.512 (6)C6—H60.9300
Ce02—O72.527 (5)C9—C141.378 (11)
Ce02—O62.531 (5)C9—C101.425 (11)
Ce02—O52.566 (6)C9—C151.484 (8)
Ce02—O22i2.584 (5)C10—C111.397 (9)
Ce02—O32.610 (5)C10—H100.9300
Ce02—O82.633 (5)C11—C121.410 (11)
Ce02—C23i2.958 (7)C11—C161.473 (10)
Ce02—C152.968 (6)C12—C131.369 (11)
O1—C71.276 (8)C12—H120.9300
O5—C23i1.265 (8)C13—C141.394 (8)
O7—C151.279 (9)C14—H140.9300
O8—C151.250 (10)C17—C221.353 (11)
O9—C71.240 (8)C17—C181.391 (10)
O10—C81.243 (7)C17—C241.519 (8)
O11—C81.257 (7)C18—C191.374 (9)
O12—C51.375 (8)C18—H180.9300
O12—HO120.8200C19—C201.386 (11)
O13—C161.268 (8)C20—C211.391 (10)
O14—C161.267 (9)C20—H200.9300
O20—C241.265 (10)C21—C221.391 (10)
O21—C241.272 (9)C21—C231.503 (9)
O22—C231.271 (8)C22—H220.9300
O22—Ce02ii2.584 (5)C23—O5ii1.265 (8)
O23—C191.375 (9)C23—Ce02ii2.958 (7)
O18—Ce01—O1979.28 (19)O7—Ce02—C1525.3 (2)
O18—Ce01—O1679.28 (18)O6—Ce02—C1598.89 (19)
O19—Ce01—O16145.56 (18)O5—Ce02—C1594.8 (2)
O18—Ce01—O2081.84 (18)O22i—Ce02—C15143.09 (18)
O19—Ce01—O20125.0 (2)O3—Ce02—C15146.23 (16)
O16—Ce01—O2077.81 (17)O8—Ce02—C1524.9 (2)
O18—Ce01—O15135.56 (19)C23i—Ce02—C15119.4 (2)
O19—Ce01—O1569.7 (2)C7—O1—Ce02128.1 (4)
O16—Ce01—O15141.7 (2)C23i—O5—Ce0295.0 (4)
O20—Ce01—O1590.47 (18)C15—O7—Ce0297.0 (4)
O18—Ce01—O13145.98 (19)C15—O8—Ce0292.7 (4)
O19—Ce01—O13134.74 (16)C5—O12—HO12109.5
O16—Ce01—O1370.74 (18)C16—O13—Ce0195.9 (4)
O20—Ce01—O1376.54 (18)C16—O14—Ce0195.2 (4)
O15—Ce01—O1371.1 (2)C24—O20—Ce0196.5 (4)
O18—Ce01—O14142.62 (17)C24—O21—Ce0193.4 (4)
O19—Ce01—O1497.2 (2)C23—O22—Ce02ii94.0 (4)
O16—Ce01—O1484.03 (18)C19—O23—HO23109.5
O20—Ce01—O14126.83 (18)C13—O24—HO24109.5
O15—Ce01—O1474.10 (18)C2—C1—C6120.6 (6)
O13—Ce01—O1450.29 (16)C2—C1—C7120.3 (5)
O18—Ce01—O1771.82 (18)C6—C1—C7119.0 (5)
O19—Ce01—O1772.9 (2)C1—C2—C3120.4 (6)
O16—Ce01—O1775.00 (19)C1—C2—H2119.8
O20—Ce01—O17144.98 (17)C3—C2—H2119.8
O15—Ce01—O17124.49 (18)C2—C3—C4118.7 (6)
O13—Ce01—O17113.84 (19)C2—C3—C8121.6 (6)
O14—Ce01—O1771.64 (16)C4—C3—C8119.6 (6)
O18—Ce01—O2170.48 (16)C5—C4—C3120.4 (7)
O19—Ce01—O2174.45 (19)C5—C4—H4119.8
O16—Ce01—O21122.17 (18)C3—C4—H4119.8
O20—Ce01—O2150.52 (16)O12—C5—C4117.7 (6)
O15—Ce01—O2171.05 (16)O12—C5—C6121.6 (6)
O13—Ce01—O21112.54 (17)C4—C5—C6120.7 (7)
O14—Ce01—O21144.92 (16)C5—C6—C1119.0 (6)
O17—Ce01—O21133.6 (2)C5—C6—H6120.5
O18—Ce01—C2475.15 (18)C1—C6—H6120.5
O19—Ce01—C2499.8 (2)O9—C7—O1122.0 (6)
O16—Ce01—C24100.3 (2)O9—C7—C1119.5 (6)
O20—Ce01—C2425.1 (2)O1—C7—C1118.5 (6)
O15—Ce01—C2479.62 (16)O10—C8—O11123.9 (6)
O13—Ce01—C2494.4 (2)O10—C8—C3118.4 (5)
O14—Ce01—C24141.20 (18)O11—C8—C3117.6 (5)
O17—Ce01—C24146.94 (18)C14—C9—C10119.5 (6)
O21—Ce01—C2425.4 (2)C14—C9—C15121.1 (7)
O18—Ce01—C16152.66 (17)C10—C9—C15119.4 (7)
O19—Ce01—C16118.0 (2)C11—C10—C9119.4 (7)
O16—Ce01—C1675.10 (19)C11—C10—H10120.3
O20—Ce01—C16101.68 (19)C9—C10—H10120.3
O15—Ce01—C1671.77 (19)C10—C11—C12119.7 (7)
O13—Ce01—C1625.16 (18)C10—C11—C16120.1 (6)
O14—Ce01—C1625.18 (17)C12—C11—C16119.9 (6)
O17—Ce01—C1692.26 (19)C13—C12—C11120.0 (6)
O21—Ce01—C16132.36 (17)C13—C12—H12120.0
C24—Ce01—C16118.6 (2)C11—C12—H12120.0
O1—Ce02—O4137.07 (18)C12—C13—O24116.6 (6)
O1—Ce02—O272.3 (2)C12—C13—C14120.9 (7)
O4—Ce02—O276.04 (18)O24—C13—C14122.6 (7)
O1—Ce02—O791.05 (17)C9—C14—C13120.5 (7)
O4—Ce02—O783.36 (17)C9—C14—H14119.8
O2—Ce02—O7124.20 (19)C13—C14—H14119.8
O1—Ce02—O6141.2 (2)O8—C15—O7120.0 (5)
O4—Ce02—O678.68 (17)O8—C15—C9119.9 (7)
O2—Ce02—O6144.32 (17)O7—C15—C9120.1 (7)
O7—Ce02—O676.65 (17)O8—C15—Ce0262.4 (3)
O1—Ce02—O570.7 (2)O7—C15—Ce0257.7 (3)
O4—Ce02—O5146.11 (17)C9—C15—Ce02175.2 (6)
O2—Ce02—O5137.85 (14)O14—C16—O13118.4 (6)
O7—Ce02—O576.11 (18)O14—C16—C11120.6 (6)
O6—Ce02—O570.57 (17)O13—C16—C11120.9 (6)
O1—Ce02—O22i75.81 (17)O14—C16—Ce0159.6 (4)
O4—Ce02—O22i139.21 (15)O13—C16—Ce0159.0 (4)
O2—Ce02—O22i100.97 (19)C11—C16—Ce01174.9 (5)
O7—Ce02—O22i126.57 (17)C22—C17—C18120.3 (6)
O6—Ce02—O22i82.36 (19)C22—C17—C24120.3 (7)
O5—Ce02—O22i50.55 (16)C18—C17—C24119.5 (7)
O1—Ce02—O3125.89 (16)C19—C18—C17119.5 (6)
O4—Ce02—O370.36 (16)C19—C18—H18120.2
O2—Ce02—O374.88 (19)C17—C18—H18120.2
O7—Ce02—O3143.05 (16)C18—C19—O23118.8 (6)
O6—Ce02—O373.14 (18)C18—C19—C20120.7 (6)
O5—Ce02—O3112.25 (18)O23—C19—C20120.4 (6)
O22i—Ce02—O369.68 (16)C19—C20—C21119.1 (6)
O1—Ce02—O874.37 (15)C19—C20—H20120.4
O4—Ce02—O869.52 (14)C21—C20—H20120.4
O2—Ce02—O874.04 (18)C20—C21—C22119.6 (7)
O7—Ce02—O850.16 (16)C20—C21—C23120.9 (6)
O6—Ce02—O8119.37 (18)C22—C21—C23119.3 (6)
O5—Ce02—O8113.79 (16)C17—C22—C21120.7 (7)
O22i—Ce02—O8149.85 (16)C17—C22—H22119.6
O3—Ce02—O8133.78 (18)C21—C22—H22119.6
O1—Ce02—C23i72.35 (19)O5ii—C23—O22120.3 (6)
O4—Ce02—C23i150.49 (16)O5ii—C23—C21118.9 (6)
O2—Ce02—C23i121.66 (19)O22—C23—C21120.8 (6)
O7—Ce02—C23i101.21 (19)O5ii—C23—Ce02ii59.8 (4)
O6—Ce02—C23i74.19 (18)O22—C23—Ce02ii60.6 (4)
O5—Ce02—C23i25.21 (18)C21—C23—Ce02ii176.0 (4)
O22i—Ce02—C23i25.37 (17)O20—C24—O21119.5 (5)
O3—Ce02—C23i90.60 (18)O20—C24—C17119.6 (7)
O8—Ce02—C23i135.04 (16)O21—C24—C17120.9 (7)
O1—Ce02—C1581.10 (14)O20—C24—Ce0158.3 (3)
O4—Ce02—C1575.91 (17)O21—C24—Ce0161.2 (3)
O2—Ce02—C1598.9 (2)C17—C24—Ce01176.7 (6)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ce2(C8H4O5)3(H2O)9]·6H2O
Mr1090.82
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.7150 (3), 11.1039 (2), 16.3611 (4)
β (°) 100.975 (2)
V3)1911.01 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.46
Crystal size (mm)0.14 × 0.05 × 0.04
Data collection
DiffractometerKappa CCD
diffractometer
Absorption correctionMulti-scan
(Blessing,1995)
Tmin, Tmax0.763, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
26639, 8644, 7711
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.06
No. of reflections8644
No. of parameters506
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.46, 1.28
Absolute structureFlack (1983), 4150 Friedel pairs
Absolute structure parameter0.166 (19)

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The French Cooperation Agency in Senegal and the China Scholarship Council in China are acknowledged for financial support. The Centre de Diffractométrie X of the University of Rennes 1 is acknowledged for the data collection.

References

First citationBinnemans, K. (2009). Chem. Rev. 109, 4283–4374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalvez, G., Bernot, K., Guillou, O., Daiguebonne, C., Caneschi, A. & Mahé, N. (2008). Inorg. Chim. Acta, 361, 3997–4003.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, M., Wang, C., Hu, M. & Liu, C. S. (2012). Inorg. Chem. Commun. 17, 104–107.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaiguebonne, C., Gérault, Y., Guillou, O., Lecerf, A., Boubekeur, K., Batail, P., Kahn, M. & Kahn, O. (1998). J. Alloys Compd, 275–277, 50–53.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaiguebonne, C., Kerbellec, N., Gérault, Y. & Guillou, O. (2008). J. Alloys Compd, 451, 372–376.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErmer, O. & Neudörfl, J. (2001). Chem. Eur. J. 7, 4961–4980.  CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFreslon, S., Luo, Y., Calvez, G., Daiguebonne, C., Guillou, O., Bernot, K., Michel, V. & Fan, X. (2014). Inorg. Chem. 53, 1217–1228.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHenisch, H. K. (1988). In Crystals in Gels and Liesegang Rings. Cambridge University Press.  Google Scholar
First citationHenisch, H. K. & Rustum, R. (1970). In Crystal Growth in Gels. The Pennsylvania State University Press.  Google Scholar
First citationHuang, Y., Tan, B. & Shao, M. (2008). J. Mol. Struct. 876, 211–217.  Web of Science CrossRef CAS Google Scholar
First citationJeon, J. R. & Clérac, R. (2012). Dalton Trans. 41, 9569–9596.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKerbellec, N., Daiguebonne, C., Bernot, K., Guillou, O. & Le Guillou, X. (2008). J. Alloys Compd, 451, 377–383.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J. D., Wu, S. T., Li, Z. H. & Du, S. W. (2010). Dalton Trans. 39, 10719–10728.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationQiu, Y., Daiguebonne, C., Liu, J., Zeng, R., Kerbellec, N., Deng, H. & Guillou, O. (2007). Inorg. Chim. Acta, 360, 3265–3271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H. & Li, Y. (2004). J. Mol. Struct. 690, 137–143.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m181-m182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds