organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[Eth­yl(2-hy­dr­oxy­eth­yl)carbamo­thio­yl]-2-methyl­benzamide

aLow Carbon Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: aishah80@ukm.my

(Received 5 April 2014; accepted 19 April 2014; online 26 April 2014)

The title compound, C13H18N2O2S, adopts a cis conformation between the methyl­benzoyl and thiono groups across their thio­urea C—N bond. However, the methyl­benzoyl group and N2CS thio­urea moiety are twisted by 15.03 (3)°. In the molecule there is an N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by O—H⋯O inter­actions, generating chains extending along the c-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures of thio­urea derivatives, see: Awang et al. (2013[Awang, N. W., Yamin, B. M. & Yusof, S. F. (2013). Z. Kristallogr. New Cryst. Struct. 228, 467-468.]); Sapari et al. (2013[Sapari, S., Yamin, B. M. & Hasbullah, S. A. (2013). Z. Kristallogr. New Cryst. Struct. 228, 465-466.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O2S

  • Mr = 266.35

  • Monoclinic, P 21 /c

  • a = 11.393 (4) Å

  • b = 8.989 (3) Å

  • c = 14.467 (5) Å

  • β = 109.940 (9)°

  • V = 1392.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.35 × 0.34 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.986

  • 28196 measured reflections

  • 2583 independent reflections

  • 2005 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.06

  • 2583 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.98 2.750 (2) 149
O2—H2A⋯O1i 0.81 (2) 1.91 (2) 2.716 (2) 171 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

An acetone (30 ml) solution of 2-(ethyl­amino)­ethanol (0.18 g, 2 mmol) was added to a round-bottomed flask containing 2-methyl­benzoyl iso­thio­cyanate (0.31 g,2 mmol). The mixture was refluxed for 3h. After cooling the solution was filtered off and the filtrate was left to evaporate at room temperature. The solid formed was washed with water and cold ethanol. Crystals suitable for X-ray study were obtained by recrystallization from DMSO.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93-0.97Å and N–H = 0.86Å with Uiso(H)= 1.2Ueq[C (methyl­ene and aromatic),N] and 1.5 Ueq [C (methyl)]. The hydroxyl hydrogen atom was located from Fourier map and refined isotropically with O—H restraint to 0.81Å with esd of 0.01.

Results and discussion top

The carbonoyl­thio­urea derivatives with a secondary amine group at the terminal thio­urea moiety are expected to adopt a cis conformation with respect to the position of the carbonoyl against the thiono group. Such a configuration will allow the ligand to chelate with metals in bidentate manner. Thus, 2,4-di­chloro-N-[ethyl­(hy­droxy­ethyl)­carbamo­thioyl]benzamide (Sapari et al.,2013) and N[ethyl­(hy­droxy­ethyl)­carbamo­thioyl]-2-iodo-benzamide (Awang et al., 2013) adopt the said conformation. The title compound is analogous to the two compounds but having a methyl group attached at position-2 of the benzene ring (Fig.1). However, the title molecule maintains a cis conformation between the carbonyl and thiono groups across the C8—N1 bond and twisted by torsion angle of O1—C8—N1—C9 and S1—C9—N1—C8 of 7.1 (3)and 47.1 (2)° respectively. Both S1/N1/N2/C9 thio­urea moiety and (C1—C8) benzyl fragments are planar with maximum deviation of 0.031 (2)Å for C4 atom from the least square plane of the benzyl fragment. The two planes make dihedral angle of 15.03 (3)°. The bond lengths and angles are in normal ranges (Allen et al.,1987) and comparable to those in the two analogs. There is an intra­molecular hydrogen bond N1–H1A···O2 between the amido hydrogen and hydroxyl oxygen atom. In the crystal structure, the molecules are linked by O2–H2A···O1 inter­molecular hydrogen bond (see Table 1 for symmetry codes) to form one-dimensional chains along the c-axis direction (Fig.2). In addition, there is a C—H.. π bond between H12B and (C1—C6) centroid (-x,1-y,-z) with the H12B···Cg distance of 2.84Å and C12—H12B—Cg angle, 137°.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures of thiourea derivatives, see: Awang et al. (2013); Sapari et al. (2013) .

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. Packing of (I) viewed down the a-axis. The dashed lines indicate intermolecular hydrogen bonds.
N-[Ethyl(2-hydroxyethyl)carbamothioyl]-2-methylbenzamide top
Crystal data top
C13H18N2O2SF(000) = 568
Mr = 266.35Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21535 reflections
a = 11.393 (4) Åθ = 2.8–26.5°
b = 8.989 (3) ŵ = 0.23 mm1
c = 14.467 (5) ÅT = 296 K
β = 109.940 (9)°Block, colorless
V = 1392.7 (7) Å30.35 × 0.34 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2583 independent reflections
Radiation source: fine-focus sealed tube2005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 3.6°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.924, Tmax = 0.986l = 1717
28196 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.6558P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2583 reflectionsΔρmax = 0.20 e Å3
169 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (13)
Crystal data top
C13H18N2O2SV = 1392.7 (7) Å3
Mr = 266.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.393 (4) ŵ = 0.23 mm1
b = 8.989 (3) ÅT = 296 K
c = 14.467 (5) Å0.35 × 0.34 × 0.06 mm
β = 109.940 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2583 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2005 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.986Rint = 0.048
28196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
2583 reflectionsΔρmin = 0.20 e Å3
169 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41046 (5)0.21117 (6)0.04784 (4)0.05354 (18)
O10.13506 (12)0.29922 (15)0.09305 (9)0.0484 (3)
O20.19987 (15)0.33465 (18)0.26307 (10)0.0605 (4)
N10.19870 (12)0.29892 (16)0.07400 (10)0.0349 (3)
H1A0.17150.29660.12260.042*
N20.37657 (13)0.41992 (16)0.16698 (10)0.0360 (3)
C10.06300 (17)0.3318 (2)0.04619 (13)0.0440 (4)
H10.01320.40360.08760.053*
C20.18157 (19)0.3051 (3)0.04839 (16)0.0563 (6)
H20.21260.36040.08930.068*
C30.25302 (18)0.1954 (3)0.01084 (16)0.0588 (6)
H30.33190.17410.00860.071*
C40.20788 (17)0.1171 (2)0.07337 (15)0.0516 (5)
H40.25720.04270.11230.062*
C50.09168 (16)0.1453 (2)0.08036 (12)0.0399 (4)
C60.01715 (15)0.25332 (19)0.01686 (12)0.0346 (4)
C70.0495 (2)0.0586 (2)0.15221 (14)0.0544 (5)
H7A0.10730.02090.17940.082*
H7B0.03200.01810.11900.082*
H7C0.04640.12320.20410.082*
C80.11165 (16)0.28421 (18)0.01751 (12)0.0347 (4)
C90.32863 (15)0.31759 (18)0.09763 (12)0.0345 (4)
C100.51197 (17)0.4398 (2)0.21078 (14)0.0500 (5)
H10A0.55290.34570.20890.060*
H10B0.53260.46820.27920.060*
C110.5611 (2)0.5562 (3)0.15845 (18)0.0699 (7)
H11A0.54400.52660.09130.105*
H11B0.64970.56650.19050.105*
H11C0.52110.64960.16020.105*
C120.30146 (18)0.5213 (2)0.20352 (13)0.0428 (4)
H12A0.22260.53970.15140.051*
H12B0.34490.61560.22050.051*
C130.2756 (2)0.4621 (3)0.29216 (14)0.0573 (6)
H13A0.35340.43670.34360.069*
H13B0.23320.53700.31750.069*
H2A0.187 (2)0.300 (3)0.3107 (13)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0491 (3)0.0548 (3)0.0672 (4)0.0036 (2)0.0334 (3)0.0109 (3)
O10.0528 (8)0.0629 (9)0.0344 (7)0.0094 (7)0.0212 (6)0.0071 (6)
O20.0835 (11)0.0669 (10)0.0426 (8)0.0108 (8)0.0366 (8)0.0027 (7)
N10.0331 (7)0.0443 (9)0.0310 (7)0.0087 (6)0.0154 (6)0.0054 (6)
N20.0360 (8)0.0361 (8)0.0327 (7)0.0062 (6)0.0075 (6)0.0006 (6)
C10.0438 (10)0.0458 (11)0.0438 (10)0.0005 (8)0.0166 (8)0.0022 (9)
C20.0465 (12)0.0715 (15)0.0579 (12)0.0127 (11)0.0271 (10)0.0137 (11)
C30.0309 (10)0.0753 (15)0.0669 (14)0.0008 (10)0.0124 (10)0.0274 (12)
C40.0380 (11)0.0535 (13)0.0514 (12)0.0092 (9)0.0000 (9)0.0140 (10)
C50.0364 (9)0.0389 (10)0.0362 (9)0.0025 (8)0.0015 (7)0.0094 (8)
C60.0338 (9)0.0350 (9)0.0331 (9)0.0017 (7)0.0092 (7)0.0051 (7)
C70.0601 (13)0.0485 (12)0.0466 (11)0.0125 (10)0.0078 (10)0.0101 (9)
C80.0410 (9)0.0300 (9)0.0353 (9)0.0045 (7)0.0161 (8)0.0052 (7)
C90.0372 (9)0.0346 (9)0.0337 (9)0.0058 (7)0.0146 (7)0.0041 (7)
C100.0376 (10)0.0569 (12)0.0442 (11)0.0096 (9)0.0007 (8)0.0021 (9)
C110.0515 (13)0.0740 (16)0.0800 (16)0.0247 (12)0.0170 (12)0.0045 (13)
C120.0530 (11)0.0336 (10)0.0396 (10)0.0037 (8)0.0127 (8)0.0036 (8)
C130.0747 (15)0.0627 (14)0.0372 (10)0.0000 (11)0.0227 (10)0.0080 (9)
Geometric parameters (Å, º) top
S1—C91.6617 (17)C4—H40.9300
O1—C81.2176 (19)C5—C61.406 (2)
O2—C131.410 (3)C5—C71.503 (3)
O2—H2A0.815 (10)C6—C81.497 (2)
N1—C81.363 (2)C7—H7A0.9600
N1—C91.411 (2)C7—H7B0.9600
N1—H1A0.8600C7—H7C0.9600
N2—C91.333 (2)C10—C111.507 (3)
N2—C101.465 (2)C10—H10A0.9700
N2—C121.467 (2)C10—H10B0.9700
C1—C21.383 (3)C11—H11A0.9600
C1—C61.388 (2)C11—H11B0.9600
C1—H10.9300C11—H11C0.9600
C2—C31.376 (3)C12—C131.507 (3)
C2—H20.9300C12—H12A0.9700
C3—C41.377 (3)C12—H12B0.9700
C3—H30.9300C13—H13A0.9700
C4—C51.385 (3)C13—H13B0.9700
C13—O2—H2A109.2 (19)O1—C8—N1123.46 (15)
C8—N1—C9127.05 (13)O1—C8—C6122.79 (15)
C8—N1—H1A116.5N1—C8—C6113.71 (14)
C9—N1—H1A116.5N2—C9—N1113.03 (14)
C9—N2—C10120.68 (15)N2—C9—S1125.24 (13)
C9—N2—C12124.08 (14)N1—C9—S1121.59 (12)
C10—N2—C12115.22 (14)N2—C10—C11112.60 (16)
C2—C1—C6121.06 (18)N2—C10—H10A109.1
C2—C1—H1119.5C11—C10—H10A109.1
C6—C1—H1119.5N2—C10—H10B109.1
C3—C2—C1119.02 (19)C11—C10—H10B109.1
C3—C2—H2120.5H10A—C10—H10B107.8
C1—C2—H2120.5C10—C11—H11A109.5
C2—C3—C4120.08 (18)C10—C11—H11B109.5
C2—C3—H3120.0H11A—C11—H11B109.5
C4—C3—H3120.0C10—C11—H11C109.5
C3—C4—C5122.36 (19)H11A—C11—H11C109.5
C3—C4—H4118.8H11B—C11—H11C109.5
C5—C4—H4118.8N2—C12—C13113.24 (16)
C4—C5—C6117.25 (18)N2—C12—H12A108.9
C4—C5—C7119.64 (17)C13—C12—H12A108.9
C6—C5—C7123.09 (16)N2—C12—H12B108.9
C1—C6—C5120.12 (16)C13—C12—H12B108.9
C1—C6—C8119.94 (15)H12A—C12—H12B107.7
C5—C6—C8119.94 (15)O2—C13—C12108.07 (15)
C5—C7—H7A109.5O2—C13—H13A110.1
C5—C7—H7B109.5C12—C13—H13A110.1
H7A—C7—H7B109.5O2—C13—H13B110.1
C5—C7—H7C109.5C12—C13—H13B110.1
H7A—C7—H7C109.5H13A—C13—H13B108.4
H7B—C7—H7C109.5
C6—C1—C2—C32.1 (3)C5—C6—C8—O145.3 (2)
C1—C2—C3—C42.0 (3)C1—C6—C8—N143.5 (2)
C2—C3—C4—C50.7 (3)C5—C6—C8—N1136.79 (16)
C3—C4—C5—C63.2 (3)C10—N2—C9—N1171.38 (14)
C3—C4—C5—C7178.29 (18)C12—N2—C9—N110.0 (2)
C2—C1—C6—C50.4 (3)C10—N2—C9—S14.2 (2)
C2—C1—C6—C8179.82 (17)C12—N2—C9—S1174.43 (13)
C4—C5—C6—C13.0 (2)C8—N1—C9—N2137.07 (16)
C7—C5—C6—C1178.51 (17)C8—N1—C9—S147.1 (2)
C4—C5—C6—C8177.27 (15)C9—N2—C10—C1192.3 (2)
C7—C5—C6—C81.2 (3)C12—N2—C10—C1186.5 (2)
C9—N1—C8—O17.0 (3)C9—N2—C12—C1392.0 (2)
C9—N1—C8—C6175.12 (15)C10—N2—C12—C1389.25 (19)
C1—C6—C8—O1134.39 (18)N2—C12—C13—O265.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.750 (2)149
O2—H2A···O1i0.81 (2)1.91 (2)2.716 (2)171 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.861.982.750 (2)149
O2—H2A···O1i0.81 (2)1.91 (2)2.716 (2)171 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants GUP-2103-022, DIP-2012-11, LRGS/BU/2011/USM-UKM/PG-02 and the Centre of Research and Instrumentation (CRIM) for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAwang, N. W., Yamin, B. M. & Yusof, S. F. (2013). Z. Kristallogr. New Cryst. Struct. 228, 467–468.  CAS Google Scholar
First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSapari, S., Yamin, B. M. & Hasbullah, S. A. (2013). Z. Kristallogr. New Cryst. Struct. 228, 465-466.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds