organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o577-o578

2-[2,6-Bis(pyrazin-2-yl)pyridin-4-yl]benzoic acid

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wujzh@scnu.edu.cn

(Received 19 March 2014; accepted 15 April 2014; online 18 April 2014)

In the title compound, C20H13N5O2, the two pyrazine rings are nearly coplanar with the central pyridine ring, forming dihedral angles of 2.21 (9) and 4.57 (9)°. In contrast, the strong steric hindrance caused by the ortho-carboxyl group on the phenyl ring makes this ring rotate out of the attached pyridine ring plane by 52.60 (9)°. The carboxyl group is twisted from the phenyl ring by 22.6 (1)°. In the crystal, aromatic ππ stacking inter­actions [centroid–centroid distances = 3.9186 (4) and 3.9794 (5) Å] occur between the anti­parallel mol­ecules, generating infinite chains along [100]. O—H⋯O hydrogen bonds connect the chains, leading to the formation of a two-dimensional supra­molecular network parallel to (010). Inter­molecular C—H⋯N hydrogen bonds are also observed.

Related literature

For background to terpyridine compounds, see: Constable (2008[Constable, E. C. (2008). Coord. Chem. Rev. 252, 842-855.]); Eryazici et al. (2008[Eryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834-1895.]); Schubert et al. (2006[Schubert, U. S., Hofmeier, H. & Newkome, G. R. (2006). In Modern Terpyridine Chemistry. Weinheim: Wiley-VCH.]); Wild et al. (2011[Wild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459-1511.]); Zadykowicz & Potvin (1999[Zadykowicz, J. & Potvin, P. G. (1999). J. Coord. Chem. 47, 395-407.]); Wang & Hanan (2005[Wang, J. & Hanan, G. S. (2005). Synlett, pp. 1251-1254.]). For similar dipyrazinyl­pyridine compounds, see: Dares et al. (2011[Dares, C., Manivannan, T., Potvin, P. G. & Lever, A. B. P. (2011). Inorg. Chim. Acta, 374, 606-619.]); Dai et al. (2010a[Dai, J.-W., Li, B.-Z., Chen, Y.-L., Huang, G., Cai, B., Yu, Y. & Wu, J.-Z. (2010a). Inorg. Chem. Commun. 13, 625-629.],b[Dai, J.-W., Li, Z.-Y., Chen, Y.-L., Cai, B., Wu, J.-Z. & Yu, Y. (2010b). Z. Anorg. Allg. Chem. 636, 2475-2480.]); Vougioukalakis et al. (2010[Vougioukalakis, G. C., Stergiopoulos, T., Kantonis, G., Kontos, A. G., Papadopoulos, K., Stublla, A., Potvin, P. G. & Falaras, P. (2010). J. Photochem. Photobiol. A Chem. 214, 22-32.]); Liegghio et al. (2001[Liegghio, R., Potvin, P. G. & Lever, A. B. P. (2001). Inorg. Chem. 40, 5485-5486.]).

[Scheme 1]

Experimental

Crystal data
  • C20H13N5O2

  • Mr = 355.35

  • Triclinic, [P \overline 1]

  • a = 7.0253 (9) Å

  • b = 10.9070 (14) Å

  • c = 11.3218 (14) Å

  • α = 99.345 (2)°

  • β = 99.266 (2)°

  • γ = 102.513 (2)°

  • V = 818.17 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.22 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.985

  • 4395 measured reflections

  • 2998 independent reflections

  • 1732 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.137

  • S = 1.00

  • 2998 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.84 2.656 (3) 176
C15—H15⋯N2ii 0.93 2.56 3.438 (3) 157
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Terpyridine compounds are among the most frequently used tridentate ligands for transition metal elements (Constable, 2008; Eryazici et al., 2008; Schubert et al., 2006; Wild et al.). However, the similar dipyrazinylpyridine compounds have received much less attention and only a few structures have been reported (Dares et al., 2011; Dai et al., 2010a; Dai et al., 2010b; Vougioukalakis et al., 2010; Liegghio et al., 2001). We previously demonstrated that 4-p-tolyl-2,6-di(pyrazin-2-yl)pyridine has stronger intermolecular interactions than its isoelectronic counterpart 4-p-tolyl-2,2':6',2''-terpyridine (suggested by a 90°C higher melting point for the former) and their coordination behaviours are also somewhat different (Dai et al., 2010a). Herein we report the synthesis of 4-o-carboxyphenyl-2,6-di(pyrazin-2-yl)pyridine, (I), the first carboxyl-containing dipyrazinylpyridine compound, via by the Kröhnke reaction in a very convenient one-pot method in quantitative yield which contrasts with the frequently used two-step procedures for preparation of many terpyridine compounds (Schubert et al., 2006). The molecular structure of (I) is shown in Fig. 1. Both pyrazinyl rings have their ortho N-atoms anti to the central pyridyl N atom. This conformation is free of possible steric strain between the vicinal C–H groups of the central pyridyl and the peripheral pyrazinyl rings and also avoids the lone-pair repulsions between syn-- positioned N atoms (Zadykowicz & Potvin, 1999) as is commonly found for the non-coordinated terpyridine or dipyrazinylpyridine compounds (Dares et al., 2011; Dai et al., 2010b; Vougioukalakis et al., 2010; Liegghio et al., 2001). The two pyrazinyl rings are nearly coplanar with the pyridyl ring as the dihedral angles between the N3- and N5-containing pyrazinyl rings and the pyridyl ring are 2.21 (9)° and 4.57 (9)°, respectively. In contrast, the strong steric hindrance caused by the ortho-carboxyl group on the phenyl ring makes this ring rotate out of the attached pyridyl plane by 52.60 (9)°. The carboxyl group twists from the phenyl ring by 22.6 (1)°.

The O–H···O and C–H···N hydrogen bonds (Table 1) as well as the aromatic ππ stacking interactions direct the crystal packing. As displayed in Fig. 2, each planar dipyrazinylpyridine moiety is antiparallel to two other moieties above and below it generating ππ stacking interactions as evidenced by the centroid-centroid distances between the nearly parallel aromatic rings: Cg(N2/N3/C1–C4)···Cg(N1/C5–C9)i 3.9186 (4) Å and Cg(N2/N3/C1–C4)···Cg(N1/C5–C9)ii 3.9794 (5) Å [symmetry codes: (i) –x, –y, –z+1; (ii) x+1, y, z]. The presence of a C15–H15···N2i hydrogen bond (Table 1, Fig. 2) may account for the fact that the former centroid-centroid distance is a little shorter than the latter. The continuous stacking of the pyridyl and the N2-containing pyrazinyl rings leads to formation of infinite one-dimensional chains along the (100) direction. Between the neighbouring chains there are strong O1–H1A···O2iii [(iii) –x+1, –y, –z] hydrogen bonds (Table 1, Fig. 2) forming a two-dimensional supramolecular network parallel to (010). There are no significant interactions among these sheets.

Related literature top

For background to terpyridine compounds, see: Constable (2008); Eryazici et al. (2008); Schubert et al. (2006); Wild et al. (2011); Zadykowicz & Potvin (1999); Wang & Hanan (2005). For similar dipyrazinylpyridine compounds, see: Dares et al. (2011); Dai et al. (2010a,b); Vougioukalakis et al. (2010); Liegghio et al. (2001).

Experimental top

To 15 mL of a methanolic solution of 2-acetylpyrazine (0.813 g, 6.7 mmol) and 2-carboxybenzaldehyde (0.5 g, 3.3 mmol) was added 10 mL of an aqueous solution of potassium hydroxide (3.57 mol·L–1) and then 15 mL of concentrated ammonia. After stirring for 24 h, the solution was acidified to pH 3–4 using hydrochloric acid. The resulting yellow precipitate was collected and washed with water and ethanol (yield 97%). Yellow crystals were obtained by recrystallization from chloroform, m.p. 282.2–284.0°C. IR (υ/cm–1): 3134, 3047, 1717, 1604, 1470, 1374, 1250, 1119, 1015, 850, 760, 690, 626, 480; 1H NMR (400 MHz, CDCl3, TMS, δ/ppm): 9.83 (s, 2H, pyrazinyl NCHCN), 8.61 (m, 4H, pyrazinyl NCHCHN), 8.46 (s, 2H, pyridyl NCCH), 8.06 (d, 1H, phenyl CHCCOOH), 7.59 (t, 1H, phenyl CHCHCHCCOOH), 7.51 (t, 1H, phenyl CHCHCHCHCCOOH), 7.43 (d, 1H, phenyl CHCHCCOOH); ESI-MS: m/z = 354 ([M–H]).

Refinement top

H atoms attached to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The carboxyl H atom was located in a difference Fourier map and treated with the riding-model approximation with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular ORTEP diagram of (I) with atomic numbering. Displacement ellipsoids are drawn at the 50% probability and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of (I). The aromatic stacking interactions are shown as solid green lines. The O–H···O and C–H···N hydrogen bonds are shown as dashed red and light blue lines, respectively. The H atoms not involved with the hydrogen bonds are omitted for clarity.
2-[2,6-Bis(pyrazin-2-yl)pyridin-4-yl]benzoic acid top
Crystal data top
C20H13N5O2Z = 2
Mr = 355.35F(000) = 368
Triclinic, P1Dx = 1.442 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0253 (9) ÅCell parameters from 753 reflections
b = 10.9070 (14) Åθ = 3.2–23.9°
c = 11.3218 (14) ŵ = 0.10 mm1
α = 99.345 (2)°T = 298 K
β = 99.266 (2)°Block, yellow
γ = 102.513 (2)°0.22 × 0.16 × 0.15 mm
V = 818.17 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube1732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 87
Tmin = 0.979, Tmax = 0.985k = 1213
4395 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.0149P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C20H13N5O2γ = 102.513 (2)°
Mr = 355.35V = 818.17 (18) Å3
Triclinic, P1Z = 2
a = 7.0253 (9) ÅMo Kα radiation
b = 10.9070 (14) ŵ = 0.10 mm1
c = 11.3218 (14) ÅT = 298 K
α = 99.345 (2)°0.22 × 0.16 × 0.15 mm
β = 99.266 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1732 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.985Rint = 0.022
4395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
2998 reflectionsΔρmin = 0.17 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1728 (4)0.3687 (3)0.4584 (3)0.0532 (7)
H10.16370.45410.46270.064*
C20.1161 (4)0.3393 (3)0.3473 (3)0.0557 (8)
H20.06710.40560.27900.067*
C30.1994 (3)0.1281 (2)0.4341 (2)0.0380 (6)
C40.2524 (4)0.1594 (3)0.5464 (2)0.0495 (7)
H40.29860.09360.61530.059*
C50.2180 (3)0.0075 (2)0.4215 (2)0.0367 (6)
C60.1703 (4)0.0386 (2)0.3081 (2)0.0402 (6)
H60.12760.02560.23780.048*
C70.1866 (4)0.1655 (2)0.29993 (19)0.0366 (6)
C80.2548 (3)0.2569 (2)0.4075 (2)0.0385 (6)
H80.27020.34340.40590.046*
C90.3002 (3)0.2190 (2)0.5181 (2)0.0359 (6)
C100.3715 (3)0.3160 (2)0.63435 (19)0.0361 (6)
C110.4319 (4)0.2822 (3)0.7455 (2)0.0487 (7)
H110.42420.19630.74700.058*
C120.5066 (4)0.4901 (3)0.8416 (2)0.0560 (8)
H120.55460.55390.91200.067*
C130.4448 (4)0.5244 (3)0.7330 (2)0.0508 (7)
H130.45070.61020.73240.061*
C140.1170 (4)0.2064 (2)0.1841 (2)0.0387 (6)
C150.0200 (4)0.2817 (3)0.1901 (2)0.0500 (7)
H150.05530.30580.26460.060*
C160.1048 (4)0.3215 (3)0.0891 (2)0.0619 (8)
H160.19730.37040.09600.074*
C170.0530 (4)0.2893 (3)0.0211 (2)0.0583 (8)
H170.10860.31680.08910.070*
C180.0815 (4)0.2162 (2)0.0302 (2)0.0472 (7)
H180.11620.19440.10530.057*
C190.1680 (4)0.1736 (2)0.0699 (2)0.0384 (6)
C200.3147 (4)0.0977 (2)0.0456 (2)0.0441 (7)
N10.2823 (3)0.09612 (19)0.52578 (16)0.0382 (5)
N20.2399 (4)0.2799 (2)0.5597 (2)0.0571 (7)
N30.1286 (3)0.2189 (2)0.33310 (18)0.0492 (6)
N40.5000 (4)0.3688 (2)0.84957 (18)0.0592 (7)
N50.3768 (3)0.4380 (2)0.62871 (17)0.0457 (6)
O10.4479 (3)0.0935 (2)0.13504 (16)0.0668 (6)
H1A0.51940.04910.11020.100*
O20.3067 (3)0.0435 (2)0.06218 (15)0.0668 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (2)0.0413 (17)0.0645 (19)0.0228 (14)0.0308 (16)0.0198 (15)
C20.071 (2)0.0374 (17)0.0585 (18)0.0121 (15)0.0171 (15)0.0081 (14)
C30.0415 (15)0.0388 (15)0.0364 (14)0.0119 (12)0.0116 (11)0.0094 (11)
C40.0631 (19)0.0448 (17)0.0455 (16)0.0180 (14)0.0160 (14)0.0120 (13)
C50.0412 (14)0.0390 (15)0.0321 (13)0.0125 (11)0.0096 (11)0.0080 (11)
C60.0514 (16)0.0365 (15)0.0327 (13)0.0140 (12)0.0070 (11)0.0052 (11)
C70.0460 (15)0.0370 (15)0.0301 (13)0.0138 (12)0.0103 (11)0.0088 (11)
C80.0513 (16)0.0356 (15)0.0345 (13)0.0166 (12)0.0136 (12)0.0115 (11)
C90.0400 (14)0.0372 (15)0.0347 (13)0.0149 (11)0.0113 (11)0.0088 (11)
C100.0382 (14)0.0396 (15)0.0318 (13)0.0104 (11)0.0099 (11)0.0066 (11)
C110.0630 (18)0.0461 (17)0.0367 (14)0.0169 (14)0.0069 (13)0.0068 (12)
C120.070 (2)0.0503 (19)0.0410 (16)0.0121 (15)0.0063 (14)0.0011 (13)
C130.071 (2)0.0388 (16)0.0417 (15)0.0114 (14)0.0150 (14)0.0039 (12)
C140.0488 (16)0.0344 (14)0.0326 (13)0.0099 (12)0.0071 (11)0.0072 (11)
C150.0677 (19)0.0558 (18)0.0362 (15)0.0306 (15)0.0163 (13)0.0107 (13)
C160.077 (2)0.075 (2)0.0508 (17)0.0470 (18)0.0171 (16)0.0203 (15)
C170.078 (2)0.068 (2)0.0402 (16)0.0362 (17)0.0102 (15)0.0206 (14)
C180.0608 (18)0.0507 (18)0.0310 (14)0.0151 (14)0.0101 (12)0.0079 (12)
C190.0446 (15)0.0363 (15)0.0339 (13)0.0122 (12)0.0070 (11)0.0044 (11)
C200.0526 (17)0.0422 (16)0.0350 (14)0.0090 (13)0.0080 (13)0.0051 (12)
N10.0465 (13)0.0385 (13)0.0334 (11)0.0149 (10)0.0114 (9)0.0091 (9)
N20.0798 (18)0.0509 (16)0.0544 (15)0.0276 (13)0.0260 (13)0.0226 (12)
N30.0692 (16)0.0344 (13)0.0439 (13)0.0128 (11)0.0098 (11)0.0095 (10)
N40.0834 (18)0.0574 (17)0.0339 (12)0.0208 (14)0.0025 (12)0.0060 (11)
N50.0593 (15)0.0392 (13)0.0392 (12)0.0137 (11)0.0111 (11)0.0065 (10)
O10.0674 (14)0.0972 (17)0.0447 (11)0.0458 (12)0.0097 (10)0.0071 (11)
O20.0819 (15)0.0797 (15)0.0412 (11)0.0400 (12)0.0104 (10)0.0052 (10)
Geometric parameters (Å, º) top
C1—N21.320 (3)C11—N41.331 (3)
C1—C21.367 (3)C11—H110.9300
C1—H10.9300C12—N41.332 (3)
C2—N31.334 (3)C12—C131.373 (3)
C2—H20.9300C12—H120.9300
C3—N31.331 (3)C13—N51.331 (3)
C3—C41.384 (3)C13—H130.9300
C3—C51.488 (3)C14—C151.397 (3)
C4—N21.334 (3)C14—C191.408 (3)
C4—H40.9300C15—C161.380 (3)
C5—N11.342 (3)C15—H150.9300
C5—C61.389 (3)C16—C171.369 (3)
C6—C71.382 (3)C16—H160.9300
C6—H60.9300C17—C181.367 (4)
C7—C81.385 (3)C17—H170.9300
C7—C141.496 (3)C18—C191.394 (3)
C8—C91.391 (3)C18—H180.9300
C8—H80.9300C19—C201.486 (3)
C9—N11.337 (3)C20—O21.254 (3)
C9—C101.486 (3)C20—O11.277 (3)
C10—N51.336 (3)O1—H1A0.8200
C10—C111.395 (3)
N2—C1—C2122.2 (3)N4—C12—C13122.3 (2)
N2—C1—H1118.9N4—C12—H12118.8
C2—C1—H1118.9C13—C12—H12118.8
N3—C2—C1122.5 (3)N5—C13—C12121.8 (3)
N3—C2—H2118.8N5—C13—H13119.1
C1—C2—H2118.8C12—C13—H13119.1
N3—C3—C4120.9 (2)C15—C14—C19117.0 (2)
N3—C3—C5117.6 (2)C15—C14—C7115.5 (2)
C4—C3—C5121.6 (2)C19—C14—C7127.4 (2)
N2—C4—C3122.7 (3)C16—C15—C14122.1 (2)
N2—C4—H4118.7C16—C15—H15118.9
C3—C4—H4118.7C14—C15—H15118.9
N1—C5—C6122.8 (2)C17—C16—C15120.1 (3)
N1—C5—C3115.9 (2)C17—C16—H16119.9
C6—C5—C3121.3 (2)C15—C16—H16119.9
C7—C6—C5119.8 (2)C18—C17—C16119.3 (3)
C7—C6—H6120.1C18—C17—H17120.3
C5—C6—H6120.1C16—C17—H17120.3
C6—C7—C8117.3 (2)C17—C18—C19121.8 (2)
C6—C7—C14123.3 (2)C17—C18—H18119.1
C8—C7—C14119.1 (2)C19—C18—H18119.1
C7—C8—C9119.9 (2)C18—C19—C14119.6 (2)
C7—C8—H8120.1C18—C19—C20115.3 (2)
C9—C8—H8120.1C14—C19—C20125.2 (2)
N1—C9—C8122.6 (2)O2—C20—O1122.5 (3)
N1—C9—C10117.0 (2)O2—C20—C19118.8 (2)
C8—C9—C10120.4 (2)O1—C20—C19118.7 (2)
N5—C10—C11120.8 (2)C9—N1—C5117.6 (2)
N5—C10—C9117.4 (2)C1—N2—C4115.6 (2)
C11—C10—C9121.8 (2)C3—N3—C2116.1 (2)
N4—C11—C10122.2 (3)C11—N4—C12116.1 (2)
N4—C11—H11118.9C13—N5—C10116.8 (2)
C10—C11—H11118.9C20—O1—H1A109.5
N2—C1—C2—N31.4 (4)C14—C15—C16—C171.1 (4)
N3—C3—C4—N21.4 (4)C15—C16—C17—C180.7 (5)
C5—C3—C4—N2179.0 (2)C16—C17—C18—C190.1 (4)
N3—C3—C5—N1177.5 (2)C17—C18—C19—C140.2 (4)
C4—C3—C5—N12.2 (3)C17—C18—C19—C20178.6 (3)
N3—C3—C5—C62.4 (3)C15—C14—C19—C180.1 (4)
C4—C3—C5—C6178.0 (2)C7—C14—C19—C18177.1 (2)
N1—C5—C6—C70.7 (4)C15—C14—C19—C20178.1 (2)
C3—C5—C6—C7179.1 (2)C7—C14—C19—C204.6 (4)
C5—C6—C7—C81.2 (3)C18—C19—C20—O222.1 (3)
C5—C6—C7—C14172.8 (2)C14—C19—C20—O2159.6 (2)
C6—C7—C8—C91.1 (3)C18—C19—C20—O1155.8 (2)
C14—C7—C8—C9173.2 (2)C14—C19—C20—O122.5 (4)
C7—C8—C9—N10.5 (4)C8—C9—N1—C50.1 (3)
C7—C8—C9—C10179.4 (2)C10—C9—N1—C5179.9 (2)
N1—C9—C10—N5175.5 (2)C6—C5—N1—C90.0 (3)
C8—C9—C10—N54.4 (3)C3—C5—N1—C9179.8 (2)
N1—C9—C10—C114.8 (3)C2—C1—N2—C41.2 (4)
C8—C9—C10—C11175.3 (2)C3—C4—N2—C10.2 (4)
N5—C10—C11—N41.2 (4)C4—C3—N3—C21.2 (4)
C9—C10—C11—N4178.5 (2)C5—C3—N3—C2179.2 (2)
N4—C12—C13—N50.8 (4)C1—C2—N3—C30.2 (4)
C6—C7—C14—C15123.9 (3)C10—C11—N4—C120.3 (4)
C8—C7—C14—C1550.1 (3)C13—C12—N4—C110.7 (4)
C6—C7—C14—C1953.4 (4)C12—C13—N5—C100.1 (4)
C8—C7—C14—C19132.6 (3)C11—C10—N5—C131.1 (3)
C19—C14—C15—C160.8 (4)C9—C10—N5—C13178.6 (2)
C7—C14—C15—C16176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.842.656 (3)176
C15—H15···N2ii0.932.563.438 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.842.656 (3)176
C15—H15···N2ii0.932.563.438 (3)157
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1.
 

Acknowledgements

Financial support from the South China Normal University is gratefully acknowledged.

References

First citationBruker (2002). SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
First citationConstable, E. C. (2008). Coord. Chem. Rev. 252, 842–855.  Web of Science CrossRef CAS
First citationDai, J.-W., Li, Z.-Y., Chen, Y.-L., Cai, B., Wu, J.-Z. & Yu, Y. (2010b). Z. Anorg. Allg. Chem. 636, 2475–2480.  Web of Science CSD CrossRef CAS
First citationDai, J.-W., Li, B.-Z., Chen, Y.-L., Huang, G., Cai, B., Yu, Y. & Wu, J.-Z. (2010a). Inorg. Chem. Commun. 13, 625–629.  Web of Science CSD CrossRef CAS
First citationDares, C., Manivannan, T., Potvin, P. G. & Lever, A. B. P. (2011). Inorg. Chim. Acta, 374, 606–619.  Web of Science CSD CrossRef CAS
First citationEryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834–1895.  Web of Science CrossRef PubMed CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationLiegghio, R., Potvin, P. G. & Lever, A. B. P. (2001). Inorg. Chem. 40, 5485–5486.  Web of Science CSD CrossRef PubMed CAS
First citationSchubert, U. S., Hofmeier, H. & Newkome, G. R. (2006). In Modern Terpyridine Chemistry. Weinheim: Wiley-VCH.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationVougioukalakis, G. C., Stergiopoulos, T., Kantonis, G., Kontos, A. G., Papadopoulos, K., Stublla, A., Potvin, P. G. & Falaras, P. (2010). J. Photochem. Photobiol. A Chem. 214, 22–32.  Web of Science CrossRef CAS
First citationWang, J. & Hanan, G. S. (2005). Synlett, pp. 1251–1254.
First citationWild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459–1511.  Web of Science CrossRef CAS PubMed
First citationZadykowicz, J. & Potvin, P. G. (1999). J. Coord. Chem. 47, 395–407.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o577-o578
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds