[Journal logo]

Volume 70 
Part 5 
Pages m187-m188  
May 2014  

Received 21 February 2014
Accepted 14 April 2014
Online 18 April 2014

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.023
wR = 0.063
Data-to-parameter ratio = 16.0
Details
Open access

catena-Poly[[aqua­zinc(II)]-[mu]-N,N'-bis­(2-cyano-3-eth­oxy-3-oxoprop-1-en­yl)benzene-1,2-diaminido]

aIKFT, KIT-Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Correspondence e-mail: olaf.walter@ec.europa.eu

The slightly yellow-coloured title complex, [Zn(C18H16N4O4)(H2O)]n, crystallizes with one mol­ecule in the asymmetric unit. The structure clearly shows the mer-[eta]4O,O,N,N-binding mode of the N,N'-bis-(2-cyano-ethyl­propeno­yl)-1,2-di­amido­benzene ligand stabilizing the Zn centre of a distorted octa­hedral environment. The fifth coordination site in one apical position is held by a coordinating solvent water mol­ecule whereas the complete octa­hedral coordination sphere is completed by coordination of one N atom from a CN group of a neighbouring mol­ecule, leading to the final polymeric structure consisting of zigzag staggered chains in parallel orientation along the c-axis direction. Between the coord­in­ated water solvent molecule and the N atoms of uncoord­in­ated cyano-groups of neighboured units, two H-bridge bonds are formed. One of these H-bridge bonds is of inter- whereas the other of intra-strand nature, leading to a two-dimensional network parallel to (110) stabilizing the supramolecular structure. Six Zn-O or Zn-N bonds are found with lengths ranging from 2.061 (1) to 2.185 (1) Å and bond angles about the Zn atom are clustered in the ranges 79.83 (4)-104.21 (4) and 167.05 (4)-170.28 (4)°.

Related literature

The structures of ZnII complexes with ligands stabilizing comparable complex geometries can be found in Barnard et al. (2009[Barnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117-7126.]), Ryu et al. (2003[Ryu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803-804.]) or Tanase et al. (2001[Tanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943-3953.]). In Tanase et al. (2001[Tanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943-3953.]), the ligands show comparable N,N,O,O-coordination with respect to a different ligand backbone whereas in Ryu et al. (2003[Ryu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803-804.]) and Barnard et al. (2009[Barnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117-7126.]), the ligands with N,N,N,N-coordination are di­amino­benzene derivatives. In Fuchs et al. (2014[Fuchs, M. A., Staudt, S., Altesleben, C., Walter, O., Zevaco, T. A. & Dinjus, E. (2014). Dalton Trans. 43, 2344-2347.]), a mononuclear Zn complex is presented with the same ligand but a dmso mol­ecule in the coordination sphere of the metal stabilizing a different complex geometry. For the synthesis, see: Jäger et al. (1985[Jäger, E.-G., Häussler, E., Rudolph, M. & Schneider, A. (1985). Z. Anorg. Allg. Chem. 525, 67-85.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C18H16N4O4)(H2O)]

  • Mr = 435.73

  • Orthorhombic, P b c a

  • a = 13.9312 (11) Å

  • b = 9.2315 (7) Å

  • c = 27.423 (2) Å

  • V = 3526.7 (5) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 1.43 mm-1

  • T = 100 K

  • 0.10 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII Quazar diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.953

  • 60234 measured reflections

  • 4294 independent reflections

  • 3812 reflections with I > 2[sigma](I)

  • Rint = 0.025

Refinement
  • R[F2 > 2[sigma](F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.04

  • 4294 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.42 e Å-3

  • [Delta][rho]min = -0.43 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O5-H51...N4i 0.79 (2) 2.21 (2) 2.9823 (17) 168 (2)
O5-H52...N4ii 0.83 (2) 2.12 (2) 2.9405 (16) 174 (2)
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2220 ).


Acknowledgements

The authors gratefully acknowledge financial support for their work from the Karlsruhe Institute for Technology.

References

Barnard, P. J., Holland, J. P., Bayly, S. R., Wadas, T. J., Anderson, C. J. & Dilworth, J. R. (2009). Inorg. Chem. 48, 7117-7126.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Fuchs, M. A., Staudt, S., Altesleben, C., Walter, O., Zevaco, T. A. & Dinjus, E. (2014). Dalton Trans. 43, 2344-2347.  [CSD] [CrossRef] [ChemPort] [PubMed]
Jäger, E.-G., Häussler, E., Rudolph, M. & Schneider, A. (1985). Z. Anorg. Allg. Chem. 525, 67-85.
Ryu, J. Y., Lee, J. Y., Seo, J. S., Kim, C. & Kim, Y. (2003). Appl. Organomet. Chem. 17, 803-804.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Tanase, T., Inukai, H., Onaka, T., Kato, M., Yano, S. & Lippard, S. J. (2001). Inorg. Chem. 40, 3943-3953.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2014). E70, m187-m188   [ doi:10.1107/S1600536814008381 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.