organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o510-o511

2,2′-[2,4-Bis(naphthalen-1-yl)cyclo­butane-1,3-di­yl]bis­­(1-methyl­pyridinium) bis­­(4-chloro­benzene­sulfonate): thermal-induced [2 + 2] cyclo­addition reaction of a heterostilbene

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 9 March 2014; accepted 24 March 2014; online 2 April 2014)

The asymmetric unit of the title salt, C36H32N22+·2C6H4ClO3S, consists of one anion and one half-cation, the other half being generated by inversion symmetry. The dihedral angle between the pyridinium ring and the napthalene ring system in the asymmetric unit is 42.86 (6)°. In the crystal, cations and anions are linked by weak C—H⋯O inter­actions into chains along [010]. Adjacent chains are further arranged in an anti­parallel manner into sheets parallel to the bc plane. ππ inter­actions are observed involving the cations, with centroid–centroid distances of 3.7664 (8) and 3.8553 (8) Å.

Related literature

For background to stibene and [2 + 2] photodimerization, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Chantrapromma et al. (2007[Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821-o823.]); Papaefsta­thiou et al. (2002[Papaefstathiou, G. S., Friščić, T. & MacGillivray, L. R. (2002). J. Supramol. Chem. 2, 227-231.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]); Yayli et al. (2004[Yayli, N., Üçüncü, O., Yaşar, A., Gök, Y., Küçük, M. & Kolayli, S. (2004). Turk. J. Chem. 28, 515-521.]); Zhang et al. (2013[Zhang, X.-J., Li, L.-Y., Wang, S.-S., Que, S., Yang, W.-Z., Zhang, F.-Y., Gong, N.-B., Cheng, W., Liang, H., Ye, M., Jia, Y.-X. & Zhang, Q.-Y. (2013). Tetrahedron, 69, 11074-11079.]). For related structures, see: Chantrapromma et al. (2012[Chantrapromma, S., Chanawanno, K., Boonnak, N. & Fun, H.-K. (2012). Acta Cryst. E68, o67-o68.]); Fun, Chanawanno & Chantrapromma (2009[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2048-o2049.]); Fun, Surasit et al. (2009[Fun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2346-o2347.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C36H32N22+·2C6H4ClO3S

  • Mr = 875.86

  • Triclinic, [P \overline 1]

  • a = 7.5488 (3) Å

  • b = 11.1899 (4) Å

  • c = 12.3853 (5) Å

  • α = 79.904 (2)°

  • β = 75.964 (2)°

  • γ = 89.266 (2)°

  • V = 998.76 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.56 × 0.50 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.936

  • 35475 measured reflections

  • 5817 independent reflections

  • 4977 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.09

  • 5817 reflections

  • 351 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3 0.97 (2) 2.51 (2) 3.3762 (18) 147.9 (18)
C17—H17⋯O2i 0.974 (17) 2.506 (18) 3.3001 (18) 138.6 (13)
C20—H20⋯O2 0.97 (2) 2.20 (2) 3.1329 (18) 160.5 (19)
C23—H23⋯O1ii 0.94 (2) 2.41 (2) 3.1554 (17) 135.8 (18)
C24—H24B⋯O1ii 0.95 (2) 2.57 (2) 3.2009 (18) 124.3 (16)
C9—H9⋯Cg4iii 1.00 (2) 2.98 (2) 3.4790 (16) 112.1 (16)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Stilbene derivatives have been reported to exhibit non-linear optical (NLO) property (Ruanwas et al., 2010) and antibacterial activity (Chanawanno et al., 2010). It has been known that [2 + 2] photodimerization of stilbenes to yield cyclobutane can occur (Papaefstathiou et al., 2002). In our cases, the [2 + 2] cycloaddition of heterostilbene derivatives was carried out in solution by thermal-induced cycloaddition reaction, and we have previously reported the crystal structures of some of these derivatives (Chantrapromma et al., 2012; Fun, Chanawanno & Chantrapromma, 2009; Fun, Surasit et al., 2009). The title compound (I) was obtained by the cycloaddition of trans-heterostilbene to give a syn head-to-tail product (Yayli et al., 2004; Zhang et al., 2013). We report herein the synthesis and crystal structure of (I).

The asymmetric unit of (I), C36H32N22+·2(C6H4ClO3S-), consists of one half of a cation and one anion. The cation lies on an inversion center and the other half is generated by the symmetry operator 2-x, 1-y, 2-z (Fig. 1). The napthalene (C7–C16) moiety is planar with a r.m.s. of 0.0183 (2) Å. The dihedral angle between the pyridinium ring (N1/C19–C23) and the napthalene ring system is 42.86 (6)°. The steroisomer of (I) is syn head-to-tail (Yayli et al., 2004). The cyclobutane ring makes dihedral angles of 85.61 (8) and 52.8 (6)° with the pyridinium and naphthalene rings, respectively. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with those found in closely related structures (Chantrapromma et al., 2012; Fun, Surasit et al., 2009; Fun, Chanawanno & Chantrapromma (2009).

The crystal packing of (I) is shown in Fig. 2. The cations and anions are alternatively arranged and linked into chains along the [0 1 0] direction through C—H···O weak interactions (Table 1). Adjacent chains are arranged in a anti-parallel manner into sheets parallel to the (1 0 0) plane. π···π interactions are present with distances of Cg1···Cg2 = 3.8553 (8) Å and Cg1···Cg3 = 3.7664 (8) Å; Cg1, Cg2 and Cg3 are the centroids of the N1/C19–C23, C7–C10/C15/C16 and C10–C15 rings, respectively (Fig. 3). C—H···π weak interactions are also observed (Table 1).

Related literature top

For background to stibene and [2 + 2] photodimerization, see: Chanawanno et al. (2010); Chantrapromma et al. (2007); Papaefstathiou et al. (2002); Ruanwas et al. (2010); Yayli et al. (2004); Zhang et al. (2013). For related structures, see: Chantrapromma et al. (2012); Fun, Chanawanno & Chantrapromma (2009); Fun, Surasit et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A solution of (E)-1-methyl-2-[2-(1-naphthyl)vinyl)pyridinium iodide (0.25 g, 0.67 mmol) in CH3OH (20 ml) was mixed (1:1 molar ratio) with a solution of silver(I) 4-chlorobenzenesulfonate (0.20 g, 0.67 mmol) (Chantrapromma et al., 2007) in CH3OH (80 ml) and stirred for 30 min. The precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give a yellow solid product. The yellow solid was repeatedly recrystallized for three times by dissolving the yellow solid in CH3OH and the solution was heated at 323 K to get a clear solution. The [2 + 2] cycloaddition of (E)-1-methyl-2-[2-(1-naphthyl)vinyl)pyridinium occurred upon heating. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were obtained after recrystallization in CH3OH by slow evaporation of the solvent at room temperature after a few weeks.

Refinement top

All H atoms were located in difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids. Symmetry code: (A) 2-x, 1-y, 2-z,
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. H atoms not involved in C—H···O interactions (dashed lines) are omitted for clarity.
[Figure 3] Fig. 3. The π···π stacking interactions between the pyridinium and napthalene rings. H atoms are omitted for clarity.
2,2'-[2,4-Bis(naphthalen-1-yl)cyclobutane-1,3-diyl]bis(1-methylpyridinium) bis(4-chlorobenzenesulfonate) top
Crystal data top
C36H32N22+·2C6H4ClO3SZ = 1
Mr = 875.86F(000) = 456
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5488 (3) ÅCell parameters from 5817 reflections
b = 11.1899 (4) Åθ = 1.9–30.0°
c = 12.3853 (5) ŵ = 0.32 mm1
α = 79.904 (2)°T = 100 K
β = 75.964 (2)°Plate, yellow
γ = 89.266 (2)°0.56 × 0.50 × 0.21 mm
V = 998.76 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5817 independent reflections
Radiation source: sealed tube4977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.837, Tmax = 0.936k = 1515
35475 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.052P)2 + 0.7427P]
where P = (Fo2 + 2Fc2)/3
5817 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C36H32N22+·2C6H4ClO3Sγ = 89.266 (2)°
Mr = 875.86V = 998.76 (7) Å3
Triclinic, P1Z = 1
a = 7.5488 (3) ÅMo Kα radiation
b = 11.1899 (4) ŵ = 0.32 mm1
c = 12.3853 (5) ÅT = 100 K
α = 79.904 (2)°0.56 × 0.50 × 0.21 mm
β = 75.964 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4977 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.936Rint = 0.031
35475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115All H-atom parameters refined
S = 1.09Δρmax = 0.50 e Å3
5817 reflectionsΔρmin = 0.74 e Å3
351 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34039 (7)0.25081 (7)0.47197 (4)0.05223 (17)
S10.78639 (5)0.19952 (3)0.84360 (3)0.01743 (9)
O10.73608 (18)0.08040 (9)0.91361 (10)0.0249 (2)
O20.73144 (17)0.29857 (10)0.90582 (9)0.0247 (2)
O30.97566 (16)0.21127 (10)0.77961 (10)0.0245 (2)
N10.71757 (16)0.75327 (10)0.97380 (10)0.0141 (2)
C10.65583 (19)0.21394 (13)0.74055 (12)0.0169 (2)
C20.6222 (2)0.11222 (14)0.69692 (13)0.0216 (3)
H20.669 (3)0.036 (2)0.7248 (18)0.030 (5)*
C30.5228 (2)0.12351 (18)0.61444 (14)0.0295 (4)
H30.499 (4)0.050 (2)0.587 (2)0.048 (7)*
C40.4605 (2)0.23620 (19)0.57678 (13)0.0310 (4)
C50.4931 (2)0.33809 (18)0.61922 (14)0.0306 (4)
H50.445 (4)0.416 (2)0.594 (2)0.044 (7)*
C60.5919 (2)0.32641 (15)0.70183 (13)0.0243 (3)
H60.614 (3)0.399 (2)0.733 (2)0.043 (7)*
C71.1080 (2)0.50647 (12)0.73600 (12)0.0171 (3)
H71.107 (3)0.420 (2)0.7661 (18)0.031 (5)*
C81.0998 (2)0.54409 (13)0.62185 (12)0.0201 (3)
H81.094 (3)0.4832 (19)0.5774 (17)0.023 (5)*
C91.0930 (2)0.66488 (14)0.57787 (12)0.0198 (3)
H91.083 (3)0.692 (2)0.498 (2)0.037 (6)*
C101.09915 (19)0.75385 (12)0.64568 (11)0.0166 (2)
C111.0880 (2)0.87977 (13)0.60332 (12)0.0201 (3)
H111.079 (3)0.9014 (19)0.5266 (17)0.025 (5)*
C121.0923 (2)0.96528 (13)0.66949 (13)0.0214 (3)
H121.081 (3)1.0496 (19)0.6386 (17)0.025 (5)*
C131.1119 (2)0.92916 (12)0.78099 (13)0.0187 (3)
H131.113 (3)0.9900 (19)0.8269 (17)0.024 (5)*
C141.12389 (19)0.80819 (12)0.82451 (12)0.0156 (2)
H141.139 (3)0.7860 (17)0.9006 (16)0.016 (4)*
C151.11430 (18)0.71681 (12)0.75936 (11)0.0139 (2)
C161.11371 (18)0.58955 (12)0.80500 (11)0.0136 (2)
C171.10424 (18)0.55360 (11)0.92961 (11)0.0127 (2)
H171.208 (2)0.5887 (16)0.9483 (15)0.013 (4)*
C180.92111 (18)0.58354 (11)1.01586 (11)0.0128 (2)
H180.951 (3)0.6318 (18)1.0651 (17)0.022 (5)*
C190.77448 (17)0.63876 (11)0.96192 (11)0.0127 (2)
C200.70618 (18)0.58062 (12)0.88915 (12)0.0154 (2)
H200.743 (3)0.4980 (18)0.8833 (17)0.023 (5)*
C210.59784 (19)0.64167 (13)0.82278 (12)0.0175 (3)
H210.552 (3)0.6025 (19)0.7721 (18)0.027 (5)*
C220.5555 (2)0.76146 (13)0.83035 (13)0.0187 (3)
H220.478 (3)0.806 (2)0.7852 (18)0.028 (5)*
C230.61171 (19)0.81340 (12)0.90961 (12)0.0174 (3)
H230.578 (3)0.8907 (19)0.9267 (17)0.025 (5)*
C240.7691 (2)0.81744 (13)1.05723 (12)0.0178 (3)
H24A0.750 (3)0.7626 (19)1.1291 (17)0.023 (5)*
H24B0.694 (3)0.886 (2)1.0634 (18)0.031 (6)*
H24C0.895 (3)0.8424 (19)1.0323 (18)0.027 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0367 (3)0.0909 (5)0.0291 (2)0.0113 (3)0.02130 (19)0.0088 (2)
S10.02519 (18)0.00977 (15)0.02051 (17)0.00007 (12)0.01122 (13)0.00329 (11)
O10.0397 (6)0.0112 (4)0.0270 (5)0.0022 (4)0.0167 (5)0.0003 (4)
O20.0404 (7)0.0139 (5)0.0229 (5)0.0003 (4)0.0111 (5)0.0072 (4)
O30.0231 (5)0.0204 (5)0.0343 (6)0.0009 (4)0.0135 (5)0.0069 (4)
N10.0151 (5)0.0097 (5)0.0181 (5)0.0009 (4)0.0051 (4)0.0023 (4)
C10.0177 (6)0.0167 (6)0.0171 (6)0.0012 (5)0.0057 (5)0.0030 (5)
C20.0245 (7)0.0209 (7)0.0214 (7)0.0032 (5)0.0083 (5)0.0049 (5)
C30.0287 (8)0.0401 (10)0.0219 (7)0.0094 (7)0.0096 (6)0.0057 (7)
C40.0197 (7)0.0538 (11)0.0184 (7)0.0029 (7)0.0081 (6)0.0016 (7)
C50.0262 (8)0.0377 (9)0.0245 (7)0.0105 (7)0.0072 (6)0.0040 (7)
C60.0284 (8)0.0219 (7)0.0224 (7)0.0073 (6)0.0073 (6)0.0021 (6)
C70.0210 (6)0.0130 (6)0.0174 (6)0.0022 (5)0.0050 (5)0.0024 (5)
C80.0263 (7)0.0181 (6)0.0176 (6)0.0027 (5)0.0069 (5)0.0057 (5)
C90.0236 (7)0.0203 (7)0.0154 (6)0.0030 (5)0.0060 (5)0.0019 (5)
C100.0176 (6)0.0149 (6)0.0162 (6)0.0021 (5)0.0043 (5)0.0000 (5)
C110.0238 (7)0.0164 (6)0.0185 (6)0.0030 (5)0.0062 (5)0.0023 (5)
C120.0241 (7)0.0131 (6)0.0246 (7)0.0015 (5)0.0050 (5)0.0018 (5)
C130.0204 (6)0.0118 (6)0.0234 (7)0.0002 (5)0.0055 (5)0.0016 (5)
C140.0166 (6)0.0119 (6)0.0177 (6)0.0008 (4)0.0044 (5)0.0012 (5)
C150.0141 (5)0.0111 (5)0.0161 (6)0.0004 (4)0.0042 (4)0.0006 (4)
C160.0141 (5)0.0114 (5)0.0150 (5)0.0008 (4)0.0041 (4)0.0007 (4)
C170.0144 (5)0.0086 (5)0.0153 (5)0.0006 (4)0.0048 (4)0.0013 (4)
C180.0142 (5)0.0091 (5)0.0155 (5)0.0009 (4)0.0053 (4)0.0009 (4)
C190.0130 (5)0.0087 (5)0.0161 (6)0.0006 (4)0.0038 (4)0.0010 (4)
C200.0163 (6)0.0109 (5)0.0197 (6)0.0001 (4)0.0059 (5)0.0027 (5)
C210.0176 (6)0.0155 (6)0.0215 (6)0.0010 (5)0.0087 (5)0.0029 (5)
C220.0174 (6)0.0153 (6)0.0246 (7)0.0021 (5)0.0097 (5)0.0007 (5)
C230.0172 (6)0.0112 (5)0.0244 (7)0.0035 (5)0.0074 (5)0.0017 (5)
C240.0225 (7)0.0129 (6)0.0204 (6)0.0033 (5)0.0077 (5)0.0063 (5)
Geometric parameters (Å, º) top
Cl1—C41.7397 (16)C11—C121.370 (2)
S1—O31.4511 (12)C11—H110.96 (2)
S1—O11.4564 (11)C12—C131.412 (2)
S1—O21.4584 (11)C12—H120.96 (2)
S1—C11.7776 (14)C13—C141.3769 (18)
N1—C231.3529 (17)C13—H130.96 (2)
N1—C191.3673 (16)C14—C151.4217 (18)
N1—C241.4823 (17)C14—H140.965 (19)
C1—C61.390 (2)C15—C161.4368 (17)
C1—C21.394 (2)C16—C171.5094 (18)
C2—C31.395 (2)C17—C18i1.5585 (17)
C2—H20.96 (2)C17—C181.6005 (18)
C3—C41.383 (3)C17—H170.974 (19)
C3—H30.97 (3)C18—C191.5000 (18)
C4—C51.384 (3)C18—C17i1.5585 (17)
C5—C61.394 (2)C18—H180.95 (2)
C5—H50.98 (3)C19—C201.3932 (18)
C6—H60.99 (3)C20—C211.3879 (19)
C7—C161.3761 (18)C20—H200.97 (2)
C7—C81.4189 (19)C21—C221.388 (2)
C7—H70.98 (2)C21—H210.95 (2)
C8—C91.371 (2)C22—C231.375 (2)
C8—H80.96 (2)C22—H220.98 (2)
C9—C101.418 (2)C23—H230.94 (2)
C9—H91.00 (2)C24—H24A0.97 (2)
C10—C111.4237 (19)C24—H24B0.95 (2)
C10—C151.4282 (18)C24—H24C0.96 (2)
O3—S1—O1113.75 (7)C14—C13—C12120.46 (13)
O3—S1—O2113.02 (7)C14—C13—H13120.5 (12)
O1—S1—O2112.70 (7)C12—C13—H13119.0 (12)
O3—S1—C1105.26 (7)C13—C14—C15121.07 (13)
O1—S1—C1105.65 (7)C13—C14—H14118.8 (11)
O2—S1—C1105.50 (7)C15—C14—H14120.1 (11)
C23—N1—C19121.43 (12)C14—C15—C10118.30 (12)
C23—N1—C24116.89 (11)C14—C15—C16122.34 (12)
C19—N1—C24121.68 (11)C10—C15—C16119.33 (12)
C6—C1—C2120.35 (14)C7—C16—C15118.98 (12)
C6—C1—S1120.19 (11)C7—C16—C17123.07 (12)
C2—C1—S1119.44 (11)C15—C16—C17117.77 (11)
C1—C2—C3119.68 (15)C16—C17—C18i118.70 (11)
C1—C2—H2118.5 (13)C16—C17—C18117.06 (11)
C3—C2—H2121.8 (13)C18i—C17—C1890.59 (9)
C4—C3—C2119.18 (16)C16—C17—H17110.6 (11)
C4—C3—H3122.9 (16)C18i—C17—H17109.6 (11)
C2—C3—H3117.9 (16)C18—C17—H17108.5 (10)
C3—C4—C5121.80 (15)C19—C18—C17i117.10 (11)
C3—C4—Cl1119.17 (15)C19—C18—C17115.18 (11)
C5—C4—Cl1119.03 (15)C17i—C18—C1789.41 (9)
C4—C5—C6118.86 (16)C19—C18—H18111.7 (12)
C4—C5—H5120.9 (15)C17i—C18—H18112.1 (12)
C6—C5—H5120.3 (15)C17—C18—H18109.4 (12)
C1—C6—C5120.13 (16)N1—C19—C20117.97 (12)
C1—C6—H6120.6 (15)N1—C19—C18120.58 (11)
C5—C6—H6119.2 (15)C20—C19—C18121.12 (11)
C16—C7—C8121.32 (13)C21—C20—C19120.72 (12)
C16—C7—H7119.8 (13)C21—C20—H20121.6 (12)
C8—C7—H7118.9 (13)C19—C20—H20117.6 (12)
C9—C8—C7120.64 (13)C20—C21—C22119.42 (13)
C9—C8—H8120.8 (12)C20—C21—H21120.9 (13)
C7—C8—H8118.5 (12)C22—C21—H21119.6 (13)
C8—C9—C10120.03 (13)C23—C22—C21118.63 (13)
C8—C9—H9120.9 (14)C23—C22—H22120.2 (13)
C10—C9—H9119.0 (14)C21—C22—H22121.0 (13)
C9—C10—C11121.36 (13)N1—C23—C22121.37 (13)
C9—C10—C15119.59 (12)N1—C23—H23114.0 (13)
C11—C10—C15119.04 (13)C22—C23—H23124.6 (13)
C12—C11—C10121.14 (13)N1—C24—H24A109.0 (12)
C12—C11—H11122.0 (12)N1—C24—H24B107.3 (14)
C10—C11—H11116.8 (12)H24A—C24—H24B111.1 (18)
C11—C12—C13119.94 (13)N1—C24—H24C109.9 (13)
C11—C12—H12118.9 (12)H24A—C24—H24C108.7 (18)
C13—C12—H12121.2 (12)H24B—C24—H24C110.7 (19)
O3—S1—C1—C693.88 (13)C11—C10—C15—C16176.00 (12)
O1—S1—C1—C6145.45 (13)C8—C7—C16—C151.0 (2)
O2—S1—C1—C625.87 (14)C8—C7—C16—C17173.93 (13)
O3—S1—C1—C284.49 (13)C14—C15—C16—C7178.65 (13)
O1—S1—C1—C236.18 (14)C10—C15—C16—C73.31 (19)
O2—S1—C1—C2155.76 (12)C14—C15—C16—C176.13 (19)
C6—C1—C2—C30.4 (2)C10—C15—C16—C17171.91 (12)
S1—C1—C2—C3178.75 (12)C7—C16—C17—C18i2.56 (19)
C1—C2—C3—C40.5 (2)C15—C16—C17—C18i172.45 (11)
C2—C3—C4—C50.4 (3)C7—C16—C17—C18109.58 (14)
C2—C3—C4—Cl1178.78 (13)C15—C16—C17—C1865.43 (15)
C3—C4—C5—C60.2 (3)C16—C17—C18—C193.08 (16)
Cl1—C4—C5—C6178.95 (13)C18i—C17—C18—C19119.90 (13)
C2—C1—C6—C50.2 (2)C16—C17—C18—C17i122.98 (13)
S1—C1—C6—C5178.57 (13)C18i—C17—C18—C17i0.0
C4—C5—C6—C10.1 (3)C23—N1—C19—C206.00 (19)
C16—C7—C8—C91.5 (2)C24—N1—C19—C20174.15 (12)
C7—C8—C9—C101.7 (2)C23—N1—C19—C18167.49 (12)
C8—C9—C10—C11178.48 (14)C24—N1—C19—C1812.36 (19)
C8—C9—C10—C150.6 (2)C17i—C18—C19—N1139.98 (12)
C9—C10—C11—C12179.41 (14)C17—C18—C19—N1116.85 (13)
C15—C10—C11—C120.3 (2)C17i—C18—C19—C2046.74 (17)
C10—C11—C12—C131.3 (2)C17—C18—C19—C2056.43 (16)
C11—C12—C13—C141.0 (2)N1—C19—C20—C216.1 (2)
C12—C13—C14—C150.9 (2)C18—C19—C20—C21167.36 (13)
C13—C14—C15—C102.5 (2)C19—C20—C21—C220.8 (2)
C13—C14—C15—C16175.60 (13)C20—C21—C22—C234.6 (2)
C9—C10—C15—C14178.74 (13)C19—N1—C23—C220.6 (2)
C11—C10—C15—C142.1 (2)C24—N1—C23—C22179.56 (13)
C9—C10—C15—C163.1 (2)C21—C22—C23—N14.8 (2)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.97 (2)2.51 (2)3.3762 (18)147.9 (18)
C17—H17···O2i0.974 (17)2.506 (18)3.3001 (18)138.6 (13)
C20—H20···O20.97 (2)2.20 (2)3.1329 (18)160.5 (19)
C23—H23···O1ii0.94 (2)2.41 (2)3.1554 (17)135.8 (18)
C24—H24B···O1ii0.95 (2)2.57 (2)3.2009 (18)124.3 (16)
C9—H9···Cg4iii1.00 (2)2.98 (2)3.4790 (16)112.1 (16)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.97 (2)2.51 (2)3.3762 (18)147.9 (18)
C17—H17···O2i0.974 (17)2.506 (18)3.3001 (18)138.6 (13)
C20—H20···O20.97 (2)2.20 (2)3.1329 (18)160.5 (19)
C23—H23···O1ii0.94 (2)2.41 (2)3.1554 (17)135.8 (18)
C24—H24B···O1ii0.95 (2)2.57 (2)3.2009 (18)124.3 (16)
C9—H9···Cg4iii1.00 (2)2.98 (2)3.4790 (16)112.1 (16)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Department of Chemistry, Faculty of Science, Prince of Songkla University, for the research facility and extend their appreciation to the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChantrapromma, S., Chanawanno, K., Boonnak, N. & Fun, H.-K. (2012). Acta Cryst. E68, o67–o68.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2048–o2049.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2346–o2347.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPapaefstathiou, G. S., Friščić, T. & MacGillivray, L. R. (2002). J. Supramol. Chem. 2, 227–231.  CSD CrossRef CAS Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYayli, N., Üçüncü, O., Yaşar, A., Gök, Y., Küçük, M. & Kolayli, S. (2004). Turk. J. Chem. 28, 515–521.  CAS Google Scholar
First citationZhang, X.-J., Li, L.-Y., Wang, S.-S., Que, S., Yang, W.-Z., Zhang, F.-Y., Gong, N.-B., Cheng, W., Liang, H., Ye, M., Jia, Y.-X. & Zhang, Q.-Y. (2013). Tetrahedron, 69, 11074–11079.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o510-o511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds