organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o589-o590

(1E,4E)-1,5-Bis[4-(di­ethyl­amino)­phen­yl]penta-1,4-dien-3-one

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 31 March 2014; accepted 13 April 2014; online 26 April 2014)

There are two crystallograpically independent mol­ecules in the asymmetric unit of the title bis­chalcone derivative, C25H32N2O. Both mol­ecules are twisted with a dihedral angle between the two substituted benzene rings of 11.19 (16)° in one mol­ecule and 14.40 (15)° in the other. The central penta-1,4-dien-3-one fragments make dihedral angles of 8.49 (17) and 4.26 (17)° with the two adjacent benzene rings in one mol­ecule, whereas the corresponding values are 8.42 (16) and 6.18 (16)° in the other. In the crystal, mol­ecules are arranged into chains along the c-axis direction. Adjacent chains are inter-linked by weak inter­molecular C—H⋯O inter­actions. The crystal is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307-o308.]); Harrison et al. (2006[Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522-o1523.]); Ruanwas et al. (2011[Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33-o34.]). For background to and applications of bis­chalcones, see: Barnabas et al. (1992[Barnabas, M. V., Liu, A., Trifunac, A. D., Krongauz, V. V. & Chang, C. T. (1992). J. Phys. Chem. 96, 212-217.]); Makarov et al. (2012[Makarov, M. V., Leonova, E. S., Rybalkina, E. Yu., Khrustalev, V. N., Shepel, N. E., Roschenthaler, G.-V., Timofeeva, T. V. & Odinets, I. L. (2012). Arch. Pharm. Chem. Life Sci. 345, 349-359.]); Shibata et al. (2009[Shibata, H., Yamakoshi, H., Sato, A., Ohori, H., Kakudo, Y., Kudo, C., Takahashi, Y., Watanabe, M., Takano, H., Ishioka, C., Noda, T. & Iwabuchi, Y. (2009). Cancer Sci. 100, 956-960.]); Wanare et al. (2010[Wanare, G., Aher, R., Kawathekar, N., Ranjan, R., Kaushik, N. K. & Sahal, D. (2010). Bioorg. Med. Chem. Lett. 20, 4675-4678.]); Weber et al. (2005[Weber, W. M., Hunsaker, L. A., Abcouwer, S. F., Decka, L. M. & Vander, D. L. (2005). Bioorg. Med. Chem. 13, 3811-3820.]); Zhao et al. (2010[Zhao, C., Yang, J., Wang, Y., Liang, D., Yang, X., Li, X., Wu, J., Wu, X., Yang, S., Li, X. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388-2393.])

[Scheme 1]

Experimental

Crystal data
  • C25H32N2O

  • Mr = 376.53

  • Monoclinic, P 21 /c

  • a = 10.4290 (4) Å

  • b = 40.4773 (16) Å

  • c = 10.8087 (5) Å

  • β = 100.2621 (13)°

  • V = 4489.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.42 × 0.38 × 0.34 mm

Data collection
  • Bruker APEXII D8 Venture diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.977

  • 79317 measured reflections

  • 10289 independent reflections

  • 5710 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.270

  • S = 1.03

  • 10289 reflections

  • 501 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C1B–C6B and C12B–C17B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8B—H8BA⋯O1Bi 0.93 2.59 3.479 (4) 160
C16A—H16ACg3ii 0.93 2.91 3.758 (4) 152
C21A—H21ACg4iii 0.96 2.79 3.541 (5) 136
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Mono-carbonyl analogues of curcumin are an important class of compounds due to their variety of properties. For example these compounds exhibit anti-inflammatory (Zhao et al., 2010), antimalarial (Wanare et al., 2010), antitumor (Shibata et al., 2009) and anti-oxidant properties (Weber et al., 2005). They also act as dye sensitizers (Barnabas et al., 1992) and fluorescence agents (Makarov et al., 2012). These analogues were designed to counteract some of the disadvantageous properties of curcumin such as its poor bioavailability and instability in neutral to basic conditions. We have previously reported the crystal structures of (1E,4E)-1,5-bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one (I) (Fun et al., 2010) and (1E,4E)-1,5-bis(2,4,6-trimethoxyphenyl)penta-1,4-dien-3-one (II) (Ruanwas et al., 2011). The title compound (III) is one of the mono-carbonyl analogues of curcumin designed and synthesized by our group to study anti-tyrosinase activity and its fluorescence properties. It was found that the title compound exhibits fluorescence properties with an orange fluorescence color which will be reported elsewhere with its closely related compounds, it also possesses anti-tyrosinase activity by the dopachrome method with an IC50 value of 0.018 mg ml-1. We reported herein the crystal structure of (III).

There are two crystallographically independent molecules A and B in the asymmetric unit of (III) (Fig. 1) with the same conformation but slight differences in bond angles. The molecular structure of (III), C25H32N2O is unsymmetrical and twisted. The dihedral angle between the C1–C6 and C12–C17 benzene rings is 11.19 (16)° in molecule A (Fig. 2a) whereas it is 14.40 (15)° in molecule B. The central penta-1,4-dien-3-one unit (C7–C11/O1) is planar with r.m.s. deviations 0.0463 (3) and 0.0357 (3) Å for molecules A and B, respectively. The mean plane through this central unit makes dihedral angles of 8.49 (17) and 4.26 (17)° with the two adjacent C1–C6 and C12–C17 benzene rings, respectively in molecule A whereas the corresponding values are 8.42 (16) and 6.18 (16)° in molecule B. The two ethyl groups of each diethylamino substituent in both molecules A and B deviate from the molecular plane and point to opposite sides of the molecule to reduce the steric hindrance between them with the torsion angles C3–N1–C18–C19 = 104.1 (5)°, C3–N1–C20–C21 = 79.5 (5)°, C15–N2–C22–C23 = 106.8 (6)° and C15–N2–C24–C25 = 75.1 (6)° in molecule A. The corresponding values are 96.1 (4), 79.9 (4), 90.3 (4) and 97.6 (5)° in molecule B. The bond distances are in normal ranges (Allen et al., 1987) and are comparable with those found in related structures (Fun et al., 2010; Harrison et al., 2006 and Ruanwas et al., 2011).

In the crystal packing (Fig. 2), the molecules are arranged into chains along the c axis and the adjacent chains are further linked by weak C—H···O interactions (Table 1). The crystal is further stabilized by weak intermolecular C—H···π interactions (Table 1). Interestingly there are only one C—H···O and two C—H···π interactions stabilising the structure of (III). This contrasts sharply with the packing for (I) and (II) where significantly more weak C—H···O and C—H···π interactions were observed (Fun et al., 2010 and Ruanwas et al., 2011).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010); Harrison et al. (2006); Ruanwas et al. (2011). For background to and applications of bischalcones, see: Barnabas et al. (1992); Makarov et al. (2012); Shibata et al. (2009); Wanare et al. (2010); Weber et al. (2005); Zhao et al. (2010)

Experimental top

The title compound was synthesized by mixing 4-diethylaminobenzaldehyde (0.90 g, 6 mmol) and acetone (0.25 ml, 3 mmol) in ethanol (30 ml). 30% NaOH aqueous solution (5 ml) was then added and the mixture was stirred at room temperature for 2 h, The resulting orange solid obtained was collected by filtration, washed with distilled water and dried. Orange block-shaped single crystals of the title compound were grown in ethanol by slow evaporation, Mp. 440–441 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH; 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The same Uij parameters were used for atom pairs N1A/C18A and N2B/C22B.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding interactions in the title compound viewd appoximately along the a axis, showing chains along the c axis. Hydrogen bonds are shown as dashed lines.
(1E,4E)-1,5-Bis[4-(diethylamino)phenyl]penta-1,4-dien-3-one top
Crystal data top
C25H32N2ODx = 1.114 Mg m3
Mr = 376.53Melting point = 440–441 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4290 (4) ÅCell parameters from 10289 reflections
b = 40.4773 (16) Åθ = 2.2–27.5°
c = 10.8087 (5) ŵ = 0.07 mm1
β = 100.2621 (13)°T = 296 K
V = 4489.8 (3) Å3Block, orange
Z = 80.42 × 0.38 × 0.34 mm
F(000) = 1632
Data collection top
Bruker APEXII D8 Venture
diffractometer
5710 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.037
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 27.5°, θmin = 2.2°
Tmin = 0.972, Tmax = 0.977h = 1313
79317 measured reflectionsk = 5252
10289 independent reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.270H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.107P)2 + 2.8109P]
where P = (Fo2 + 2Fc2)/3
10289 reflections(Δ/σ)max = 0.001
501 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C25H32N2OV = 4489.8 (3) Å3
Mr = 376.53Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.4290 (4) ŵ = 0.07 mm1
b = 40.4773 (16) ÅT = 296 K
c = 10.8087 (5) Å0.42 × 0.38 × 0.34 mm
β = 100.2621 (13)°
Data collection top
Bruker APEXII D8 Venture
diffractometer
10289 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5710 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.037
79317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.270H-atom parameters constrained
S = 1.03Δρmax = 0.73 e Å3
10289 reflectionsΔρmin = 0.50 e Å3
501 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.1268 (2)0.96078 (6)0.7957 (3)0.1055 (9)
N1A0.4981 (3)1.14078 (9)0.9984 (4)0.1106 (9)
N2A0.3434 (3)0.78543 (9)0.4536 (4)0.1131 (12)
C1A0.2678 (3)1.07418 (8)0.9275 (3)0.0696 (8)
H1AA0.17861.07130.92300.084*
C2A0.3180 (3)1.10444 (8)0.9626 (3)0.0713 (8)
H2AA0.26371.12110.98260.086*
C3A0.4464 (3)1.11050 (7)0.9686 (3)0.0664 (7)
C4A0.5193 (3)1.08345 (8)0.9393 (3)0.0717 (8)
H4AA0.60821.08630.94180.086*
C5A0.4671 (3)1.05332 (8)0.9075 (3)0.0661 (8)
H5AA0.52151.03620.89170.079*
C6A0.3383 (3)1.04736 (7)0.8981 (3)0.0584 (7)
C7A0.2772 (3)1.01645 (8)0.8583 (3)0.0656 (8)
H7AA0.18831.01610.85970.079*
C8A0.3216 (3)0.98812 (8)0.8197 (3)0.0679 (8)
H8AA0.40980.98650.81590.081*
C9A0.2389 (3)0.95964 (8)0.7835 (3)0.0716 (8)
C10A0.2904 (3)0.93036 (8)0.7311 (3)0.0704 (8)
H10A0.37910.92980.72890.085*
C11A0.2197 (3)0.90447 (8)0.6866 (3)0.0705 (8)
H11A0.13280.90570.69580.085*
C12A0.2524 (3)0.87467 (8)0.6263 (3)0.0670 (8)
C13A0.1631 (3)0.85018 (9)0.5856 (3)0.0788 (9)
H13A0.07810.85330.59830.095*
C14A0.1903 (3)0.82147 (9)0.5276 (3)0.0830 (10)
H14A0.12350.80640.50190.100*
C15A0.3124 (3)0.81444 (9)0.5066 (3)0.0816 (9)
C16A0.4024 (3)0.83956 (9)0.5449 (4)0.0874 (10)
H16A0.48710.83680.53070.105*
C17A0.3733 (3)0.86792 (8)0.6019 (3)0.0780 (9)
H17A0.43910.88340.62520.094*
C18A0.4105 (4)1.17228 (11)0.9994 (5)0.1106 (9)
H18A0.44591.19100.96080.133*
H18B0.32201.16820.95650.133*
C19A0.4157 (7)1.1772 (2)1.1270 (6)0.191 (3)
H19A0.36801.19691.13970.287*
H19B0.50481.17971.16760.287*
H19C0.37781.15861.16200.287*
C20A0.6287 (4)1.14794 (10)0.9907 (5)0.1053 (14)
H20A0.68311.12941.02340.126*
H20B0.65711.16701.04270.126*
C21A0.6470 (4)1.15506 (13)0.8543 (6)0.1359 (19)
H21A0.73671.16020.85360.204*
H21B0.59341.17350.82160.204*
H21C0.62211.13590.80310.204*
C22A0.2518 (5)0.75844 (13)0.4196 (6)0.1341 (19)
H22A0.29280.73790.45190.161*
H22B0.17660.76190.45940.161*
C23A0.2087 (6)0.7554 (2)0.2853 (6)0.192 (3)
H23A0.15980.73530.26750.288*
H23B0.28300.75490.24420.288*
H23C0.15450.77390.25510.288*
C24A0.4748 (4)0.77697 (11)0.4505 (5)0.1150 (15)
H24A0.51930.79600.42320.138*
H24B0.47700.75930.39010.138*
C25A0.5461 (5)0.76578 (13)0.5796 (6)0.1391 (19)
H25A0.63350.75940.57380.209*
H25B0.50120.74730.60760.209*
H25C0.54850.78360.63850.209*
O1B0.1127 (3)0.24045 (6)1.2120 (2)0.0964 (8)
N1B0.3342 (3)0.42416 (6)0.9287 (2)0.0746 (7)
N2B0.0762 (3)0.06584 (7)0.7744 (3)0.0836 (6)
C1B0.2823 (3)0.35510 (8)1.1411 (3)0.0695 (8)
H1BA0.29500.35051.22670.083*
C2B0.3181 (3)0.38536 (8)1.1016 (3)0.0696 (8)
H2BA0.35530.40081.16100.084*
C3B0.2996 (3)0.39377 (7)0.9702 (3)0.0608 (7)
C4B0.2444 (3)0.36941 (7)0.8815 (3)0.0641 (7)
H4BA0.23150.37400.79590.077*
C5B0.2105 (3)0.33926 (7)0.9227 (3)0.0621 (7)
H5BA0.17560.32350.86360.074*
C6B0.2267 (3)0.33099 (7)1.0545 (3)0.0585 (7)
C7B0.1895 (3)0.29952 (7)1.1018 (3)0.0637 (7)
H7BA0.20290.29701.18870.076*
C8B0.1380 (3)0.27394 (7)1.0328 (3)0.0628 (7)
H8BA0.12150.27560.94560.075*
C9B0.1068 (3)0.24305 (8)1.0936 (3)0.0656 (7)
C10B0.0684 (3)0.21543 (7)1.0052 (3)0.0642 (7)
H10B0.06720.21850.91970.077*
C11B0.0353 (3)0.18616 (7)1.0473 (3)0.0635 (7)
H11B0.03290.18491.13270.076*
C12B0.0026 (3)0.15601 (7)0.9747 (3)0.0584 (7)
C13B0.0287 (3)0.12771 (7)1.0357 (3)0.0627 (7)
H13B0.02970.12861.12150.075*
C14B0.0583 (3)0.09850 (7)0.9723 (3)0.0631 (7)
H14B0.08000.08021.01620.076*
C15B0.0564 (3)0.09543 (7)0.8384 (3)0.0653 (7)
C16B0.0273 (3)0.12416 (8)0.7745 (3)0.0712 (8)
H16B0.02720.12350.68850.085*
C17B0.0009 (3)0.15306 (8)0.8405 (3)0.0675 (8)
H17B0.01990.17170.79690.081*
C18B0.3718 (4)0.45130 (9)1.0227 (4)0.0888 (10)
H18C0.33910.47220.98580.107*
H18D0.33160.44731.09560.107*
C19B0.5093 (5)0.45352 (13)1.0617 (5)0.1251 (16)
H19D0.52930.47091.12260.188*
H19E0.54930.45830.99020.188*
H19F0.54200.43291.09850.188*
C20B0.3069 (3)0.43348 (8)0.7920 (3)0.0752 (8)
H20C0.36480.45130.77790.090*
H20D0.32530.41470.74230.090*
C21B0.1729 (4)0.44383 (10)0.7499 (4)0.0940 (11)
H21D0.16030.44950.66240.141*
H21E0.15460.46270.79770.141*
H21F0.11520.42610.76180.141*
C22B0.0880 (4)0.03430 (9)0.8460 (3)0.0836 (6)
H22C0.05470.01590.80350.100*
H22D0.03660.03600.92990.100*
C23B0.2198 (4)0.02852 (12)0.8539 (5)0.1128 (14)
H23D0.22720.00780.89560.169*
H23E0.27100.02780.77080.169*
H23F0.25090.04600.90080.169*
C24B0.0960 (4)0.06305 (10)0.6325 (3)0.0905 (11)
H24C0.16200.04640.60540.109*
H24D0.12890.08400.59620.109*
C25B0.0196 (5)0.05458 (15)0.5839 (5)0.1399 (19)
H25D0.00220.05170.49450.210*
H25E0.05540.03440.62210.210*
H25F0.08260.07200.60280.210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0640 (15)0.0930 (18)0.167 (3)0.0138 (12)0.0397 (16)0.0133 (17)
N1A0.0909 (18)0.0963 (19)0.150 (3)0.0101 (14)0.0372 (17)0.0256 (17)
N2A0.085 (2)0.093 (2)0.164 (3)0.0271 (18)0.030 (2)0.043 (2)
C1A0.0505 (15)0.079 (2)0.083 (2)0.0094 (14)0.0213 (14)0.0172 (17)
C2A0.0662 (18)0.068 (2)0.086 (2)0.0179 (15)0.0298 (16)0.0121 (16)
C3A0.0608 (17)0.0623 (18)0.078 (2)0.0055 (14)0.0163 (14)0.0012 (15)
C4A0.0486 (15)0.071 (2)0.094 (2)0.0055 (14)0.0083 (15)0.0018 (17)
C5A0.0465 (15)0.0704 (19)0.080 (2)0.0135 (13)0.0082 (13)0.0019 (15)
C6A0.0505 (15)0.0649 (17)0.0601 (16)0.0065 (13)0.0109 (12)0.0124 (13)
C7A0.0502 (15)0.074 (2)0.0728 (19)0.0014 (14)0.0128 (13)0.0181 (15)
C8A0.0539 (16)0.071 (2)0.080 (2)0.0022 (14)0.0140 (14)0.0118 (16)
C9A0.0588 (18)0.075 (2)0.083 (2)0.0042 (15)0.0173 (15)0.0096 (16)
C10A0.0582 (17)0.073 (2)0.080 (2)0.0022 (15)0.0113 (15)0.0097 (16)
C11A0.0581 (17)0.074 (2)0.080 (2)0.0045 (15)0.0130 (15)0.0181 (17)
C12A0.0573 (17)0.0680 (19)0.0731 (19)0.0080 (14)0.0044 (14)0.0130 (15)
C13A0.0582 (18)0.079 (2)0.098 (2)0.0142 (16)0.0114 (16)0.0093 (19)
C14A0.063 (2)0.084 (2)0.098 (3)0.0236 (17)0.0041 (17)0.001 (2)
C15A0.071 (2)0.078 (2)0.095 (2)0.0172 (17)0.0119 (17)0.0069 (19)
C16A0.0618 (19)0.083 (2)0.118 (3)0.0147 (17)0.0155 (18)0.010 (2)
C17A0.0570 (18)0.070 (2)0.104 (3)0.0157 (15)0.0064 (16)0.0020 (18)
C18A0.0909 (18)0.0963 (19)0.150 (3)0.0101 (14)0.0372 (17)0.0256 (17)
C19A0.185 (7)0.266 (9)0.112 (4)0.041 (6)0.001 (4)0.006 (5)
C20A0.074 (2)0.077 (2)0.162 (4)0.0083 (18)0.015 (2)0.015 (3)
C21A0.080 (3)0.143 (4)0.189 (6)0.003 (3)0.037 (3)0.031 (4)
C22A0.112 (4)0.131 (4)0.164 (5)0.035 (3)0.038 (3)0.054 (4)
C23A0.145 (5)0.288 (9)0.141 (5)0.077 (6)0.018 (4)0.055 (6)
C24A0.100 (3)0.099 (3)0.157 (5)0.020 (2)0.051 (3)0.039 (3)
C25A0.120 (4)0.123 (4)0.179 (6)0.011 (3)0.041 (4)0.013 (4)
O1B0.134 (2)0.0927 (17)0.0633 (14)0.0248 (15)0.0186 (13)0.0008 (12)
N1B0.0829 (18)0.0649 (16)0.0698 (16)0.0111 (13)0.0032 (13)0.0023 (13)
N2B0.0940 (16)0.0742 (14)0.0833 (15)0.0112 (12)0.0177 (12)0.0050 (11)
C1B0.082 (2)0.071 (2)0.0533 (16)0.0018 (16)0.0069 (14)0.0071 (14)
C2B0.080 (2)0.0655 (19)0.0590 (17)0.0057 (15)0.0018 (14)0.0119 (14)
C3B0.0572 (16)0.0609 (17)0.0621 (17)0.0046 (13)0.0046 (13)0.0066 (13)
C4B0.0693 (18)0.0680 (19)0.0514 (15)0.0025 (14)0.0006 (13)0.0048 (13)
C5B0.0631 (17)0.0613 (18)0.0586 (17)0.0005 (13)0.0021 (13)0.0118 (13)
C6B0.0573 (15)0.0621 (17)0.0557 (16)0.0044 (12)0.0091 (12)0.0044 (13)
C7B0.0647 (17)0.0709 (19)0.0559 (16)0.0036 (14)0.0119 (13)0.0056 (14)
C8B0.0647 (17)0.0656 (18)0.0583 (16)0.0015 (14)0.0116 (13)0.0017 (14)
C9B0.0678 (18)0.0706 (19)0.0590 (18)0.0025 (14)0.0131 (14)0.0008 (14)
C10B0.0646 (17)0.0654 (18)0.0631 (17)0.0018 (14)0.0127 (13)0.0044 (14)
C11B0.0582 (16)0.0703 (19)0.0617 (17)0.0000 (13)0.0099 (13)0.0069 (14)
C12B0.0517 (15)0.0583 (16)0.0649 (17)0.0045 (12)0.0095 (12)0.0089 (13)
C13B0.0603 (16)0.0697 (19)0.0580 (16)0.0013 (13)0.0104 (13)0.0109 (14)
C14B0.0608 (16)0.0608 (17)0.0681 (18)0.0019 (13)0.0126 (13)0.0143 (14)
C15B0.0634 (17)0.0627 (18)0.0690 (19)0.0015 (13)0.0094 (14)0.0050 (14)
C16B0.085 (2)0.070 (2)0.0606 (17)0.0006 (16)0.0186 (15)0.0078 (15)
C17B0.0721 (19)0.0623 (18)0.0706 (19)0.0015 (14)0.0195 (15)0.0147 (15)
C18B0.101 (3)0.078 (2)0.084 (2)0.0184 (19)0.006 (2)0.0005 (18)
C19B0.109 (3)0.142 (4)0.118 (4)0.041 (3)0.002 (3)0.017 (3)
C20B0.076 (2)0.069 (2)0.079 (2)0.0070 (16)0.0113 (16)0.0002 (16)
C21B0.086 (2)0.094 (3)0.097 (3)0.009 (2)0.003 (2)0.012 (2)
C22B0.0940 (16)0.0742 (14)0.0833 (15)0.0112 (12)0.0177 (12)0.0050 (11)
C23B0.077 (2)0.127 (3)0.138 (4)0.009 (2)0.030 (2)0.006 (3)
C24B0.111 (3)0.083 (2)0.074 (2)0.008 (2)0.008 (2)0.0031 (18)
C25B0.120 (4)0.199 (6)0.106 (3)0.020 (4)0.031 (3)0.002 (4)
Geometric parameters (Å, º) top
O1A—C9A1.201 (4)O1B—C9B1.275 (3)
N1A—C3A1.355 (4)N1B—C3B1.379 (4)
N1A—C20A1.409 (5)N1B—C18B1.500 (4)
N1A—C18A1.570 (5)N1B—C20B1.502 (4)
N2A—C15A1.370 (5)N2B—C15B1.380 (4)
N2A—C24A1.419 (5)N2B—C22B1.509 (4)
N2A—C22A1.455 (5)N2B—C24B1.515 (4)
C1A—C2A1.359 (5)C1B—C2B1.371 (4)
C1A—C6A1.379 (4)C1B—C6B1.404 (4)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.351 (4)C2B—C3B1.440 (4)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.401 (4)C3B—C4B1.423 (4)
C4A—C5A1.355 (4)C4B—C5B1.367 (4)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.351 (4)C5B—C6B1.444 (4)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.434 (4)C6B—C7B1.451 (4)
C7A—C8A1.331 (4)C7B—C8B1.332 (4)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—C9A1.451 (4)C8B—C9B1.475 (4)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.456 (5)C9B—C10B1.478 (4)
C10A—C11A1.322 (4)C10B—C11B1.336 (4)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.440 (5)C11B—C12B1.458 (4)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C17A1.361 (4)C12B—C13B1.390 (4)
C12A—C13A1.378 (4)C12B—C17B1.453 (4)
C13A—C14A1.374 (5)C13B—C14B1.374 (4)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.362 (5)C14B—C15B1.457 (4)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.396 (5)C15B—C16B1.413 (4)
C16A—C17A1.362 (5)C16B—C17B1.374 (4)
C16A—H16A0.9300C16B—H16B0.9300
C17A—H17A0.9300C17B—H17B0.9300
C18A—C19A1.385 (7)C18B—C19B1.423 (6)
C18A—H18A0.9700C18B—H18C0.9700
C18A—H18B0.9700C18B—H18D0.9700
C19A—H19A0.9600C19B—H19D0.9600
C19A—H19B0.9600C19B—H19E0.9600
C19A—H19C0.9600C19B—H19F0.9600
C20A—C21A1.547 (7)C20B—C21B1.453 (5)
C20A—H20A0.9700C20B—H20C0.9700
C20A—H20B0.9700C20B—H20D0.9700
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21F0.9600
C22A—C23A1.447 (7)C22B—C23B1.412 (5)
C22A—H22A0.9700C22B—H22C0.9700
C22A—H22B0.9700C22B—H22D0.9700
C23A—H23A0.9600C23B—H23D0.9600
C23A—H23B0.9600C23B—H23E0.9600
C23A—H23C0.9600C23B—H23F0.9600
C24A—C25A1.528 (7)C24B—C25B1.440 (6)
C24A—H24A0.9700C24B—H24C0.9700
C24A—H24B0.9700C24B—H24D0.9700
C25A—H25A0.9600C25B—H25D0.9600
C25A—H25B0.9600C25B—H25E0.9600
C25A—H25C0.9600C25B—H25F0.9600
C3A—N1A—C20A121.3 (3)C3B—N1B—C18B119.0 (3)
C3A—N1A—C18A121.9 (3)C3B—N1B—C20B121.9 (2)
C20A—N1A—C18A113.8 (3)C18B—N1B—C20B117.6 (3)
C15A—N2A—C24A121.2 (3)C15B—N2B—C22B119.7 (3)
C15A—N2A—C22A123.7 (4)C15B—N2B—C24B123.6 (3)
C24A—N2A—C22A114.0 (4)C22B—N2B—C24B116.5 (3)
C2A—C1A—C6A125.4 (3)C2B—C1B—C6B121.1 (3)
C2A—C1A—H1AA117.3C2B—C1B—H1BA119.4
C6A—C1A—H1AA117.3C6B—C1B—H1BA119.4
C3A—C2A—C1A120.4 (3)C1B—C2B—C3B121.5 (3)
C3A—C2A—H2AA119.8C1B—C2B—H2BA119.3
C1A—C2A—H2AA119.8C3B—C2B—H2BA119.3
C2A—C3A—N1A121.7 (3)N1B—C3B—C4B119.8 (3)
C2A—C3A—C4A114.8 (3)N1B—C3B—C2B122.3 (3)
N1A—C3A—C4A123.5 (3)C4B—C3B—C2B117.9 (3)
C5A—C4A—C3A123.4 (3)C5B—C4B—C3B119.7 (3)
C5A—C4A—H4AA118.3C5B—C4B—H4BA120.1
C3A—C4A—H4AA118.3C3B—C4B—H4BA120.1
C6A—C5A—C4A122.0 (3)C4B—C5B—C6B122.5 (3)
C6A—C5A—H5AA119.0C4B—C5B—H5BA118.8
C4A—C5A—H5AA119.0C6B—C5B—H5BA118.8
C5A—C6A—C1A113.9 (3)C1B—C6B—C5B117.3 (3)
C5A—C6A—C7A124.1 (3)C1B—C6B—C7B118.7 (3)
C1A—C6A—C7A121.9 (3)C5B—C6B—C7B124.0 (3)
C8A—C7A—C6A133.1 (3)C8B—C7B—C6B126.3 (3)
C8A—C7A—H7AA113.4C8B—C7B—H7BA116.9
C6A—C7A—H7AA113.4C6B—C7B—H7BA116.9
C7A—C8A—C9A123.0 (3)C7B—C8B—C9B120.5 (3)
C7A—C8A—H8AA118.5C7B—C8B—H8BA119.7
C9A—C8A—H8AA118.5C9B—C8B—H8BA119.7
O1A—C9A—C8A118.9 (3)O1B—C9B—C8B122.8 (3)
O1A—C9A—C10A120.5 (3)O1B—C9B—C10B123.0 (3)
C8A—C9A—C10A120.6 (3)C8B—C9B—C10B114.2 (3)
C11A—C10A—C9A124.5 (3)C11B—C10B—C9B120.5 (3)
C11A—C10A—H10A117.7C11B—C10B—H10B119.7
C9A—C10A—H10A117.7C9B—C10B—H10B119.7
C10A—C11A—C12A131.8 (3)C10B—C11B—C12B127.5 (3)
C10A—C11A—H11A114.1C10B—C11B—H11B116.2
C12A—C11A—H11A114.1C12B—C11B—H11B116.2
C17A—C12A—C13A113.0 (3)C13B—C12B—C17B116.4 (3)
C17A—C12A—C11A123.9 (3)C13B—C12B—C11B119.1 (3)
C13A—C12A—C11A123.1 (3)C17B—C12B—C11B124.5 (3)
C14A—C13A—C12A124.8 (3)C14B—C13B—C12B121.5 (3)
C14A—C13A—H13A117.6C14B—C13B—H13B119.2
C12A—C13A—H13A117.6C12B—C13B—H13B119.2
C15A—C14A—C13A121.9 (3)C13B—C14B—C15B121.9 (3)
C15A—C14A—H14A119.1C13B—C14B—H14B119.1
C13A—C14A—H14A119.1C15B—C14B—H14B119.1
C14A—C15A—N2A123.1 (3)N2B—C15B—C16B119.7 (3)
C14A—C15A—C16A113.4 (3)N2B—C15B—C14B123.0 (3)
N2A—C15A—C16A123.5 (3)C16B—C15B—C14B117.2 (3)
C17A—C16A—C15A123.8 (3)C17B—C16B—C15B119.5 (3)
C17A—C16A—H16A118.1C17B—C16B—H16B120.3
C15A—C16A—H16A118.1C15B—C16B—H16B120.3
C12A—C17A—C16A123.1 (3)C16B—C17B—C12B123.5 (3)
C12A—C17A—H17A118.5C16B—C17B—H17B118.3
C16A—C17A—H17A118.5C12B—C17B—H17B118.3
C19A—C18A—N1A101.9 (5)C19B—C18B—N1B112.0 (4)
C19A—C18A—H18A111.4C19B—C18B—H18C109.2
N1A—C18A—H18A111.4N1B—C18B—H18C109.2
C19A—C18A—H18B111.4C19B—C18B—H18D109.2
N1A—C18A—H18B111.4N1B—C18B—H18D109.2
H18A—C18A—H18B109.3H18C—C18B—H18D107.9
C18A—C19A—H19A109.5C18B—C19B—H19D109.5
C18A—C19A—H19B109.5C18B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C18A—C19A—H19C109.5C18B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
N1A—C20A—C21A112.3 (4)C21B—C20B—N1B112.6 (3)
N1A—C20A—H20A109.1C21B—C20B—H20C109.1
C21A—C20A—H20A109.1N1B—C20B—H20C109.1
N1A—C20A—H20B109.1C21B—C20B—H20D109.1
C21A—C20A—H20B109.1N1B—C20B—H20D109.1
H20A—C20A—H20B107.9H20C—C20B—H20D107.8
C20A—C21A—H21A109.5C20B—C21B—H21D109.5
C20A—C21A—H21B109.5C20B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
C20A—C21A—H21C109.5C20B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C23A—C22A—N2A113.0 (5)C23B—C22B—N2B109.9 (3)
C23A—C22A—H22A109.0C23B—C22B—H22C109.7
N2A—C22A—H22A109.0N2B—C22B—H22C109.7
C23A—C22A—H22B109.0C23B—C22B—H22D109.7
N2A—C22A—H22B109.0N2B—C22B—H22D109.7
H22A—C22A—H22B107.8H22C—C22B—H22D108.2
C22A—C23A—H23A109.5C22B—C23B—H23D109.5
C22A—C23A—H23B109.5C22B—C23B—H23E109.5
H23A—C23A—H23B109.5H23D—C23B—H23E109.5
C22A—C23A—H23C109.5C22B—C23B—H23F109.5
H23A—C23A—H23C109.5H23D—C23B—H23F109.5
H23B—C23A—H23C109.5H23E—C23B—H23F109.5
N2A—C24A—C25A111.4 (4)C25B—C24B—N2B114.5 (4)
N2A—C24A—H24A109.3C25B—C24B—H24C108.6
C25A—C24A—H24A109.3N2B—C24B—H24C108.6
N2A—C24A—H24B109.3C25B—C24B—H24D108.6
C25A—C24A—H24B109.3N2B—C24B—H24D108.6
H24A—C24A—H24B108.0H24C—C24B—H24D107.6
C24A—C25A—H25A109.5C24B—C25B—H25D109.5
C24A—C25A—H25B109.5C24B—C25B—H25E109.5
H25A—C25A—H25B109.5H25D—C25B—H25E109.5
C24A—C25A—H25C109.5C24B—C25B—H25F109.5
H25A—C25A—H25C109.5H25D—C25B—H25F109.5
H25B—C25A—H25C109.5H25E—C25B—H25F109.5
C6A—C1A—C2A—C3A1.4 (5)C6B—C1B—C2B—C3B0.4 (5)
C1A—C2A—C3A—N1A177.4 (3)C18B—N1B—C3B—C4B170.2 (3)
C1A—C2A—C3A—C4A1.4 (5)C20B—N1B—C3B—C4B4.4 (4)
C20A—N1A—C3A—C2A172.7 (4)C18B—N1B—C3B—C2B10.3 (4)
C18A—N1A—C3A—C2A13.4 (6)C20B—N1B—C3B—C2B176.1 (3)
C20A—N1A—C3A—C4A6.0 (6)C1B—C2B—C3B—N1B179.5 (3)
C18A—N1A—C3A—C4A165.3 (4)C1B—C2B—C3B—C4B1.0 (4)
C2A—C3A—C4A—C5A0.1 (5)N1B—C3B—C4B—C5B179.8 (3)
N1A—C3A—C4A—C5A178.9 (3)C2B—C3B—C4B—C5B0.3 (4)
C3A—C4A—C5A—C6A2.0 (5)C3B—C4B—C5B—C6B0.9 (4)
C4A—C5A—C6A—C1A2.0 (4)C2B—C1B—C6B—C5B0.7 (4)
C4A—C5A—C6A—C7A176.5 (3)C2B—C1B—C6B—C7B179.4 (3)
C2A—C1A—C6A—C5A0.4 (5)C4B—C5B—C6B—C1B1.4 (4)
C2A—C1A—C6A—C7A178.2 (3)C4B—C5B—C6B—C7B178.7 (3)
C5A—C6A—C7A—C8A2.1 (5)C1B—C6B—C7B—C8B178.7 (3)
C1A—C6A—C7A—C8A176.2 (3)C5B—C6B—C7B—C8B1.1 (5)
C6A—C7A—C8A—C9A179.9 (3)C6B—C7B—C8B—C9B178.9 (3)
C7A—C8A—C9A—O1A4.7 (5)C7B—C8B—C9B—O1B8.3 (5)
C7A—C8A—C9A—C10A174.3 (3)C7B—C8B—C9B—C10B171.6 (3)
O1A—C9A—C10A—C11A4.6 (5)O1B—C9B—C10B—C11B1.2 (5)
C8A—C9A—C10A—C11A174.4 (3)C8B—C9B—C10B—C11B178.8 (3)
C9A—C10A—C11A—C12A176.3 (3)C9B—C10B—C11B—C12B176.1 (3)
C10A—C11A—C12A—C17A0.9 (6)C10B—C11B—C12B—C13B179.6 (3)
C10A—C11A—C12A—C13A179.8 (3)C10B—C11B—C12B—C17B0.0 (5)
C17A—C12A—C13A—C14A0.8 (5)C17B—C12B—C13B—C14B0.7 (4)
C11A—C12A—C13A—C14A179.8 (3)C11B—C12B—C13B—C14B179.0 (3)
C12A—C13A—C14A—C15A1.1 (6)C12B—C13B—C14B—C15B1.0 (4)
C13A—C14A—C15A—N2A177.3 (4)C22B—N2B—C15B—C16B171.2 (3)
C13A—C14A—C15A—C16A2.5 (5)C24B—N2B—C15B—C16B13.0 (5)
C24A—N2A—C15A—C14A170.5 (4)C22B—N2B—C15B—C14B5.9 (5)
C22A—N2A—C15A—C14A3.1 (7)C24B—N2B—C15B—C14B169.9 (3)
C24A—N2A—C15A—C16A9.2 (7)C13B—C14B—C15B—N2B175.0 (3)
C22A—N2A—C15A—C16A176.6 (5)C13B—C14B—C15B—C16B2.2 (4)
C14A—C15A—C16A—C17A2.3 (6)N2B—C15B—C16B—C17B175.6 (3)
N2A—C15A—C16A—C17A177.5 (4)C14B—C15B—C16B—C17B1.7 (4)
C13A—C12A—C17A—C16A1.0 (5)C15B—C16B—C17B—C12B0.1 (5)
C11A—C12A—C17A—C16A179.9 (3)C13B—C12B—C17B—C16B1.2 (4)
C15A—C16A—C17A—C12A0.5 (6)C11B—C12B—C17B—C16B178.4 (3)
C3A—N1A—C18A—C19A104.1 (5)C3B—N1B—C18B—C19B96.1 (4)
C20A—N1A—C18A—C19A95.1 (5)C20B—N1B—C18B—C19B97.5 (4)
C3A—N1A—C20A—C21A79.5 (5)C3B—N1B—C20B—C21B79.9 (4)
C18A—N1A—C20A—C21A81.4 (5)C18B—N1B—C20B—C21B86.1 (4)
C15A—N2A—C22A—C23A106.8 (6)C15B—N2B—C22B—C23B90.3 (4)
C24A—N2A—C22A—C23A85.0 (6)C24B—N2B—C22B—C23B85.8 (4)
C15A—N2A—C24A—C25A75.1 (6)C15B—N2B—C24B—C25B97.6 (5)
C22A—N2A—C24A—C25A93.4 (5)C22B—N2B—C24B—C25B86.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C1B–C6B and C12B–C17B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8B—H8BA···O1Bi0.932.593.479 (4)160
C16A—H16A···Cg3ii0.932.913.758 (4)152
C21A—H21A···Cg4iii0.962.793.541 (5)136
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+5/2; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C1B–C6B and C12B–C17B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8B—H8BA···O1Bi0.932.593.479 (4)160
C16A—H16A···Cg3ii0.932.913.758 (4)152
C21A—H21A···Cg4iii0.962.793.541 (5)136
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+5/2; (iii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hfun.c@ksu.edu.sa. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

PR thanks the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0314/2552) and the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education, Ministry of Education, Thailand, for financial support. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding the work through research group project No. RGP-VPP-207.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarnabas, M. V., Liu, A., Trifunac, A. D., Krongauz, V. V. & Chang, C. T. (1992). J. Phys. Chem. 96, 212–217.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307–o308.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMakarov, M. V., Leonova, E. S., Rybalkina, E. Yu., Khrustalev, V. N., Shepel, N. E., Roschenthaler, G.-V., Timofeeva, T. V. & Odinets, I. L. (2012). Arch. Pharm. Chem. Life Sci. 345, 349–359.  Web of Science CrossRef CAS Google Scholar
First citationRuanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33–o34.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, H., Yamakoshi, H., Sato, A., Ohori, H., Kakudo, Y., Kudo, C., Takahashi, Y., Watanabe, M., Takano, H., Ishioka, C., Noda, T. & Iwabuchi, Y. (2009). Cancer Sci. 100, 956–960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWanare, G., Aher, R., Kawathekar, N., Ranjan, R., Kaushik, N. K. & Sahal, D. (2010). Bioorg. Med. Chem. Lett. 20, 4675–4678.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWeber, W. M., Hunsaker, L. A., Abcouwer, S. F., Decka, L. M. & Vander, D. L. (2005). Bioorg. Med. Chem. 13, 3811–3820.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, C., Yang, J., Wang, Y., Liang, D., Yang, X., Li, X., Wu, J., Wu, X., Yang, S., Li, X. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388–2393.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o589-o590
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds