organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Iso­propyl-1-methyl-2,6-di­phenyl­piperidin-4-one O-nicotinoyl oxime

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus (Guindy Campus), Chennai 600 025, India, and bDepartment of Chemistry, Annamalai University, Annamalai Nagar, Chidambaram 608 002, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 27 December 2013; accepted 2 April 2014; online 12 April 2014)

In the title compound, C27H29N3O2, the piperidine ring exists in a chair conformation with an equatorial orientation of the phenyl and methyl substituents. The C—C=N bond angles are significantly different [119.1 (2) and 127.2 (2)°]. The phenyl rings are inclined to one another by 44.90 (14)°, and by 80.85 (13) and 79.62 (12)° to the mean plane of the piperidine ring. The terminal pyridine ring is inclined to the piperidine ring mean plane by 74.79 (15)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For the synthesis and biological activity of piperidin-4-one derivatives, see, for example: Parthiban et al. (2009[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981-2985.]); Narayanan et al. (2012[Narayanan, K., Shanmugam, M., Jothivel, S. & Kabilan, S. (2012). Bioorg. Med. Chem. Lett. 22, 6602-6607.]). For the crystal structures of very similar compounds, see: Vinuchakkaravarthy et al. (2013a[Vinuchakkaravarthy, T., Sivakumar, R., Srinivasan, T., Thanikachalam, V. & Velmurugan, D. (2013a). Acta Cryst. E69, o1276.],b[Vinuchakkaravarthy, T., Sivakumar, R., Srinivasan, T., Thanikachalam, V. & Velmurugan, D. (2013b). Acta Cryst. E69, o1545.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29N3O2

  • Mr = 427.53

  • Orthorhombic, P n a 21

  • a = 12.7717 (6) Å

  • b = 16.2765 (7) Å

  • c = 11.4109 (9) Å

  • V = 2372.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.491, Tmax = 0.746

  • 11654 measured reflections

  • 5117 independent reflections

  • 2975 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.132

  • S = 1.03

  • 5117 reflections

  • 292 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C6–C11 and C22–C27, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cg1i 0.93 2.87 3.700 (4) 150
C13—H13CCg2ii 0.96 2.95 3.620 (3) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The piperdin-4-one nucleus is an important class of pharmacophore due to its broad spectrum of biological actions ranging from antibacterial to anticancer (Parthiban et al., 2009; Narayanan et al., (2012). Hence, their synthesis and steriochemical analysis has gained much interest in the field of medicinal chemistry. Continuing our interest in such compounds (Vinuchakkaravarthy et al., 2013a,b) we have synthesized the title compound and report herein on its crystal structure.

The molecular structure of the title molecule is shown in Fig. 1. The piperidine ring N1/C1-C5 adopts a chair conformation with the deviations of atoms N1 and C3 from the mean plane through atoms C1/C2/C4/C5 being -0.6131 (19) and 0.6448 (25) Å, respectively. The smallest displacement asymmetry parameters (Nardelli, 1983) q2 and q3 are 0.024 (2) and -0.552 (2) Å. The ring puckering parameters (Cremer & Pople, 1975) QT and phase angle θ are 0.553 (2) and 178.6 (2)°, respectively. Thus, all parameters support the chair conformation of piperidine ring.

The C—CN bond angles are significantly different [119.1 (2) and 127.2 (2)°]. The phenyl rings (C6-C11 and C22-C27) are inclined to one another by and 44.90 (14)°, and by 80.85 (13) and 79.62 (12)°, respectively, to the mean plane of the piperidine ring (N1/C1-C5). The terminal pyridine ring (N3/C21/C16-C19) is inclined to the piperidine ring (N1/C1-C5) mean plane by 44.90 (14)°.

In the crystal, the molecules are linked by C-H···π interactions (Table 1and Fig. 2) forming a three-dimensional structure.

Related literature top

For the synthesis and biological activity of piperidin-4-one derivatives, see, for example: Parthiban et al. (2009); Narayanan et al. (2012). For the crystal structures of very similar compounds, see: Vinuchakkaravarthy et al. (2013a,b). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The intermediate 3-ethyl-2,6-diphenylpiperidin-4-one (I) was synthesized by Mannich condensation using benzaldehyde (2 mol), ammonium acetate (1 mol) and ethyl methyl ketone (1 mol) in absolute ethanol and warmed for 30 min and stirred overnight at room temperature. The product obtained was treated with methyl iodide in the presence of potassium carbonate and refluxed to give (I). The oximation of (I) was carried out by adding hydroxylamine hydrochloride in the presence of sodium acetate in ethanol and the mixture was refluxed for 2h. The resulting oxime (0.5 g, 1.55 mmol) was stirred with dry pyridine (5 ml), then 3-methylbenzoic acid (0.21 g, 1.7 mmol) was added followed by drop wise addition of phosphorus oxychloride (0.21 mL, 2.3 mmol) with stirring at ambient temperature for 15 min. Progress of the reaction was monitored by thin layer chromatography. Upon completion of the reaction saturated sodium bicarbonate solution was added and a white solid formed. It was filtered off and dried (Yield 0.58 g, 87.8%). This solid was recrystallized in ethanol to yield block-like colourless crystals of the title compound.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.93–0.98 Å with Uiso(H) =1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Two views of the crystal packing of the title compound, showing the C—H···π interactions (dashed lines; see Table 1 for details; symmetry codes: (i) 1/2 - x, 1/2 y + z; (ii) -x, -y, 1/2 - z)
(E)-3-Isopropyl-1-methyl-2,6-diphenylpiperidin-4-one O-nicotinoyl oxime top
Crystal data top
C27H29N3O2F(000) = 912
Mr = 427.53Dx = 1.197 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5117 reflections
a = 12.7717 (6) Åθ = 2.0–28.3°
b = 16.2765 (7) ŵ = 0.08 mm1
c = 11.4109 (9) ÅT = 293 K
V = 2372.1 (2) Å3Block, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5117 independent reflections
Radiation source: fine-focus sealed tube2975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω amd ϕ scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1614
Tmin = 0.491, Tmax = 0.746k = 2116
11654 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1257P]
where P = (Fo2 + 2Fc2)/3
5117 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C27H29N3O2V = 2372.1 (2) Å3
Mr = 427.53Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.7717 (6) ŵ = 0.08 mm1
b = 16.2765 (7) ÅT = 293 K
c = 11.4109 (9) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2975 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.746Rint = 0.045
11654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
5117 reflectionsΔρmin = 0.14 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20093 (18)0.54079 (15)0.4090 (2)0.0521 (6)
H10.19200.58540.35230.063*
C20.29009 (17)0.48375 (15)0.3647 (2)0.0540 (6)
H20.29690.44050.42400.065*
C30.39055 (18)0.53079 (15)0.3689 (2)0.0512 (6)
C40.41492 (19)0.56519 (17)0.4867 (2)0.0563 (6)
H4A0.47960.59630.48320.068*
H4B0.42410.52080.54250.068*
C50.32572 (18)0.62083 (15)0.5264 (2)0.0509 (6)
H50.32160.66770.47270.061*
C60.09879 (17)0.49393 (16)0.4170 (2)0.0547 (6)
C70.0836 (2)0.43621 (18)0.5037 (2)0.0648 (7)
H70.13610.42670.55850.078*
C80.0087 (2)0.39242 (19)0.5100 (3)0.0775 (9)
H80.01780.35340.56880.093*
C90.0869 (2)0.4060 (2)0.4306 (4)0.0844 (10)
H90.14920.37650.43550.101*
C100.0733 (2)0.4626 (2)0.3444 (3)0.0864 (10)
H100.12590.47130.28940.104*
C110.0187 (2)0.5076 (2)0.3384 (3)0.0729 (8)
H110.02650.54750.28070.087*
C120.2629 (2)0.43909 (18)0.2496 (3)0.0656 (7)
H120.19520.41250.26280.079*
C130.3406 (2)0.3698 (2)0.2243 (4)0.0901 (11)
H13A0.31680.33860.15800.135*
H13B0.34560.33450.29140.135*
H13C0.40820.39280.20750.135*
C140.2487 (2)0.4935 (2)0.1429 (3)0.0937 (10)
H14A0.31580.51270.11670.141*
H14B0.20540.53960.16300.141*
H14C0.21590.46250.08140.141*
C150.5761 (2)0.62544 (18)0.2066 (3)0.0616 (7)
C160.6794 (2)0.66287 (17)0.2345 (3)0.0655 (8)
C170.7231 (3)0.7185 (2)0.1568 (4)0.0922 (10)
H170.68830.73290.08830.111*
C180.8190 (4)0.7520 (2)0.1830 (4)0.1076 (14)
H180.84970.79060.13380.129*
C190.8680 (3)0.7271 (3)0.2831 (5)0.1080 (14)
H190.93360.74920.29890.130*
N30.8297 (2)0.67423 (19)0.3587 (3)0.1028 (10)
C210.7358 (3)0.64310 (19)0.3324 (3)0.0793 (9)
H210.70670.60540.38430.095*
C220.35138 (17)0.65246 (16)0.6471 (2)0.0532 (6)
C230.3903 (2)0.73080 (17)0.6616 (3)0.0643 (7)
H230.39440.76590.59750.077*
C240.4232 (2)0.7578 (2)0.7699 (3)0.0749 (8)
H240.44910.81090.77810.090*
C250.4180 (2)0.7075 (2)0.8649 (3)0.0792 (9)
H250.44080.72590.93770.095*
C260.3788 (2)0.6292 (2)0.8524 (3)0.0748 (8)
H260.37430.59480.91730.090*
C270.34641 (19)0.60174 (18)0.7443 (2)0.0615 (7)
H270.32090.54850.73640.074*
C280.1417 (2)0.63578 (19)0.5558 (3)0.0726 (8)
H28A0.15670.65920.63110.109*
H28B0.07580.60750.55880.109*
H28C0.13840.67870.49820.109*
N10.22489 (14)0.57741 (12)0.52408 (17)0.0523 (5)
N20.44194 (16)0.54136 (15)0.27484 (19)0.0606 (6)
O10.53751 (13)0.58708 (12)0.29990 (16)0.0637 (5)
O20.53326 (18)0.63179 (16)0.1144 (2)0.0924 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (13)0.0507 (15)0.0576 (15)0.0025 (11)0.0069 (11)0.0015 (11)
C20.0462 (13)0.0553 (15)0.0607 (15)0.0013 (11)0.0002 (11)0.0026 (13)
C30.0453 (12)0.0525 (15)0.0556 (14)0.0039 (10)0.0006 (11)0.0039 (12)
C40.0454 (13)0.0680 (18)0.0554 (14)0.0058 (12)0.0026 (11)0.0015 (12)
C50.0535 (14)0.0458 (14)0.0536 (13)0.0060 (11)0.0033 (11)0.0019 (11)
C60.0440 (14)0.0579 (16)0.0623 (15)0.0045 (11)0.0007 (11)0.0118 (13)
C70.0552 (15)0.073 (2)0.0660 (18)0.0035 (14)0.0046 (12)0.0131 (15)
C80.0678 (19)0.075 (2)0.090 (2)0.0116 (16)0.0204 (17)0.0194 (17)
C90.0539 (18)0.084 (3)0.115 (3)0.0101 (16)0.0090 (19)0.034 (2)
C100.0494 (16)0.096 (3)0.113 (3)0.0037 (17)0.0174 (17)0.031 (2)
C110.0577 (16)0.075 (2)0.086 (2)0.0084 (15)0.0131 (14)0.0123 (16)
C120.0518 (15)0.0688 (19)0.0762 (18)0.0028 (13)0.0025 (13)0.0221 (15)
C130.069 (2)0.081 (2)0.120 (3)0.0027 (16)0.0055 (18)0.042 (2)
C140.088 (2)0.125 (3)0.0678 (19)0.015 (2)0.0179 (16)0.019 (2)
C150.0657 (16)0.0581 (18)0.0611 (17)0.0092 (14)0.0157 (14)0.0019 (13)
C160.0666 (17)0.0517 (17)0.0781 (19)0.0034 (13)0.0257 (16)0.0086 (14)
C170.098 (3)0.081 (2)0.097 (2)0.005 (2)0.035 (2)0.0062 (19)
C180.119 (3)0.086 (3)0.118 (4)0.035 (2)0.053 (3)0.003 (2)
C190.096 (3)0.093 (3)0.135 (4)0.039 (2)0.039 (3)0.032 (3)
N30.0872 (19)0.095 (2)0.126 (3)0.0257 (17)0.0013 (19)0.019 (2)
C210.080 (2)0.071 (2)0.087 (2)0.0186 (17)0.0047 (17)0.0029 (17)
C220.0451 (13)0.0557 (16)0.0589 (15)0.0005 (11)0.0003 (11)0.0035 (12)
C230.0682 (16)0.0553 (17)0.0694 (17)0.0019 (14)0.0091 (13)0.0013 (13)
C240.0781 (19)0.064 (2)0.083 (2)0.0002 (15)0.0138 (15)0.0186 (17)
C250.083 (2)0.092 (3)0.0635 (18)0.0030 (17)0.0075 (16)0.0227 (18)
C260.0719 (17)0.097 (3)0.0553 (16)0.0007 (16)0.0053 (14)0.0051 (16)
C270.0590 (16)0.0676 (19)0.0580 (16)0.0072 (13)0.0066 (12)0.0030 (14)
C280.0561 (15)0.0680 (19)0.094 (2)0.0086 (14)0.0002 (14)0.0209 (15)
N10.0442 (10)0.0519 (13)0.0608 (12)0.0003 (9)0.0013 (9)0.0066 (10)
N20.0501 (12)0.0657 (15)0.0660 (14)0.0036 (10)0.0007 (10)0.0088 (11)
O10.0567 (10)0.0744 (13)0.0601 (11)0.0105 (9)0.0055 (8)0.0032 (9)
O20.0921 (15)0.1099 (19)0.0752 (16)0.0005 (13)0.0031 (12)0.0219 (13)
Geometric parameters (Å, º) top
C1—N11.474 (3)C14—H14A0.9600
C1—C61.514 (3)C14—H14B0.9600
C1—C21.554 (3)C14—H14C0.9600
C1—H10.9800C15—O21.189 (3)
C2—C31.495 (3)C15—O11.329 (3)
C2—C121.541 (4)C15—C161.488 (4)
C2—H20.9800C16—C211.367 (4)
C3—N21.270 (3)C16—C171.385 (4)
C3—C41.489 (3)C17—C181.372 (5)
C4—C51.524 (4)C17—H170.9300
C4—H4A0.9700C18—C191.363 (6)
C4—H4B0.9700C18—H180.9300
C5—N11.469 (3)C19—N31.313 (5)
C5—C221.507 (3)C19—H190.9300
C5—H50.9800N3—C211.336 (4)
C6—C111.378 (4)C21—H210.9300
C6—C71.378 (4)C22—C231.378 (4)
C7—C81.379 (4)C22—C271.383 (4)
C7—H70.9300C23—C241.377 (4)
C8—C91.366 (5)C23—H230.9300
C8—H80.9300C24—C251.360 (4)
C9—C101.360 (5)C24—H240.9300
C9—H90.9300C25—C261.377 (4)
C10—C111.387 (4)C25—H250.9300
C10—H100.9300C26—C271.377 (4)
C11—H110.9300C26—H260.9300
C12—C141.516 (5)C27—H270.9300
C12—C131.529 (4)C28—N11.471 (3)
C12—H120.9800C28—H28A0.9600
C13—H13A0.9600C28—H28B0.9600
C13—H13B0.9600C28—H28C0.9600
C13—H13C0.9600N2—O11.458 (3)
N1—C1—C6109.24 (19)H13B—C13—H13C109.5
N1—C1—C2112.30 (18)C12—C14—H14A109.5
C6—C1—C2110.48 (19)C12—C14—H14B109.5
N1—C1—H1108.2H14A—C14—H14B109.5
C6—C1—H1108.2C12—C14—H14C109.5
C2—C1—H1108.2H14A—C14—H14C109.5
C3—C2—C12117.5 (2)H14B—C14—H14C109.5
C3—C2—C1108.21 (19)O2—C15—O1125.3 (3)
C12—C2—C1113.24 (19)O2—C15—C16124.2 (3)
C3—C2—H2105.6O1—C15—C16110.5 (3)
C12—C2—H2105.6C21—C16—C17117.7 (3)
C1—C2—H2105.6C21—C16—C15123.1 (3)
N2—C3—C4127.2 (2)C17—C16—C15119.2 (3)
N2—C3—C2119.1 (2)C18—C17—C16118.7 (4)
C4—C3—C2113.6 (2)C18—C17—H17120.7
C3—C4—C5109.6 (2)C16—C17—H17120.7
C3—C4—H4A109.7C19—C18—C17118.3 (4)
C5—C4—H4A109.7C19—C18—H18120.9
C3—C4—H4B109.7C17—C18—H18120.9
C5—C4—H4B109.7N3—C19—C18125.0 (4)
H4A—C4—H4B108.2N3—C19—H19117.5
N1—C5—C22111.80 (19)C18—C19—H19117.5
N1—C5—C4111.34 (19)C19—N3—C21115.8 (4)
C22—C5—C4108.20 (19)N3—C21—C16124.5 (3)
N1—C5—H5108.5N3—C21—H21117.7
C22—C5—H5108.5C16—C21—H21117.7
C4—C5—H5108.5C23—C22—C27118.2 (2)
C11—C6—C7118.2 (2)C23—C22—C5120.3 (2)
C11—C6—C1121.3 (3)C27—C22—C5121.2 (2)
C7—C6—C1120.5 (2)C24—C23—C22120.8 (3)
C6—C7—C8120.7 (3)C24—C23—H23119.6
C6—C7—H7119.7C22—C23—H23119.6
C8—C7—H7119.7C25—C24—C23120.6 (3)
C9—C8—C7120.4 (3)C25—C24—H24119.7
C9—C8—H8119.8C23—C24—H24119.7
C7—C8—H8119.8C24—C25—C26119.5 (3)
C10—C9—C8119.8 (3)C24—C25—H25120.2
C10—C9—H9120.1C26—C25—H25120.2
C8—C9—H9120.1C27—C26—C25120.2 (3)
C9—C10—C11120.1 (3)C27—C26—H26119.9
C9—C10—H10119.9C25—C26—H26119.9
C11—C10—H10119.9C26—C27—C22120.7 (3)
C6—C11—C10120.8 (3)C26—C27—H27119.6
C6—C11—H11119.6C22—C27—H27119.6
C10—C11—H11119.6N1—C28—H28A109.5
C14—C12—C13110.9 (3)N1—C28—H28B109.5
C14—C12—C2115.9 (2)H28A—C28—H28B109.5
C13—C12—C2111.3 (2)N1—C28—H28C109.5
C14—C12—H12106.0H28A—C28—H28C109.5
C13—C12—H12106.0H28B—C28—H28C109.5
C2—C12—H12106.0C5—N1—C28108.55 (19)
C12—C13—H13A109.5C5—N1—C1113.11 (18)
C12—C13—H13B109.5C28—N1—C1109.30 (19)
H13A—C13—H13B109.5C3—N2—O1109.64 (19)
C12—C13—H13C109.5C15—O1—N2113.1 (2)
H13A—C13—H13C109.5
N1—C1—C2—C352.7 (3)C15—C16—C17—C18179.3 (3)
C6—C1—C2—C3174.9 (2)C16—C17—C18—C191.8 (5)
N1—C1—C2—C12175.2 (2)C17—C18—C19—N31.5 (6)
C6—C1—C2—C1252.9 (3)C18—C19—N3—C210.7 (6)
C12—C2—C3—N29.3 (3)C19—N3—C21—C160.2 (5)
C1—C2—C3—N2120.5 (2)C17—C16—C21—N30.5 (5)
C12—C2—C3—C4174.6 (2)C15—C16—C21—N3178.5 (3)
C1—C2—C3—C455.7 (3)N1—C5—C22—C23135.9 (2)
N2—C3—C4—C5118.2 (3)C4—C5—C22—C23101.1 (3)
C2—C3—C4—C557.6 (3)N1—C5—C22—C2750.4 (3)
C3—C4—C5—N155.1 (3)C4—C5—C22—C2772.5 (3)
C3—C4—C5—C22178.3 (2)C27—C22—C23—C240.1 (4)
N1—C1—C6—C11128.0 (2)C5—C22—C23—C24173.9 (2)
C2—C1—C6—C11108.0 (3)C22—C23—C24—C250.1 (5)
N1—C1—C6—C751.9 (3)C23—C24—C25—C260.5 (5)
C2—C1—C6—C772.1 (3)C24—C25—C26—C270.8 (5)
C11—C6—C7—C81.2 (4)C25—C26—C27—C220.8 (4)
C1—C6—C7—C8178.9 (2)C23—C22—C27—C260.4 (4)
C6—C7—C8—C90.4 (4)C5—C22—C27—C26174.2 (2)
C7—C8—C9—C100.4 (5)C22—C5—N1—C2862.5 (3)
C8—C9—C10—C111.2 (5)C4—C5—N1—C28176.4 (2)
C7—C6—C11—C102.0 (4)C22—C5—N1—C1176.0 (2)
C1—C6—C11—C10178.1 (3)C4—C5—N1—C154.9 (2)
C9—C10—C11—C62.0 (4)C6—C1—N1—C5177.12 (19)
C3—C2—C12—C1462.2 (3)C2—C1—N1—C554.2 (3)
C1—C2—C12—C1465.2 (3)C6—C1—N1—C2861.8 (3)
C3—C2—C12—C1365.7 (3)C2—C1—N1—C28175.2 (2)
C1—C2—C12—C13167.0 (2)C4—C3—N2—O15.6 (3)
O2—C15—C16—C21168.0 (3)C2—C3—N2—O1178.9 (2)
O1—C15—C16—C2114.4 (4)O2—C15—O1—N28.8 (4)
O2—C15—C16—C1710.0 (4)C16—C15—O1—N2173.59 (19)
O1—C15—C16—C17167.7 (3)C3—N2—O1—C15157.5 (2)
C21—C16—C17—C181.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C6–C11 and C22–C27, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg1i0.932.873.700 (4)150
C13—H13C···Cg2ii0.962.953.620 (3)128
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C6–C11 and C22–C27, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···Cg1i0.932.873.700 (4)150
C13—H13C···Cg2ii0.962.953.620 (3)128
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TV, TS and DV thank the UGC (SAP–CAS) for providing facilities to the Department.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationNarayanan, K., Shanmugam, M., Jothivel, S. & Kabilan, S. (2012). Bioorg. Med. Chem. Lett. 22, 6602–6607.  Web of Science CSD CrossRef CAS PubMed
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985.  Web of Science CSD CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationVinuchakkaravarthy, T., Sivakumar, R., Srinivasan, T., Thanikachalam, V. & Velmurugan, D. (2013a). Acta Cryst. E69, o1276.  CSD CrossRef IUCr Journals
First citationVinuchakkaravarthy, T., Sivakumar, R., Srinivasan, T., Thanikachalam, V. & Velmurugan, D. (2013b). Acta Cryst. E69, o1545.  CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds