organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o579-o580

4-(4-Bromo­phen­yl)-7,7-di­methyl-2-methyl­amino-3-nitro-7,8-di­hydro-4H-chromen-5(6H)-one including an unknown solvate

aSri Ram Engineering College, Chennai 602 024, India, bDepartment of Chemistry, Pondichery University, Pondichery 605 014, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 17 March 2014; accepted 10 April 2014; online 18 April 2014)

In the title compound, C18H19BrN2O4, the chromene unit is not quite planar (r.m.s. deviation = 0.199 Å), with the methyl C atoms lying 0.027 (4) and 1.929 (4) Å from the mean plane of the chromene unit. The six-membered carbocyclic ring of the chromene moiety adopts an envelope conformation, with the dimethyl-substituted C atom as the flap. The methyl­amine and nitro groups are slightly twisted from the chromene moiety, with C—N—C—O and O—N—C—C torsion angles of 2.7 (4) and −0.4 (4)°, respectively. The dihedral angle between the mean plane of the chromene unit and the benzene ring is 85.61 (13)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif, which stabilizes the mol­ecular conformation. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming hexa­gonal rings lying parallel to the ab plane. A region of disordered electron density, most probably disordered ethanol solvent mol­ecules, occupying voids of ca 432 Å3 for an electron count of 158, was treated using the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. Their formula mass and unit-cell characteristics were not taken into account during refinement.

Related literature

For the biological and pharmacological properties of chromene and chromene derivatives, see: Thomas & Zachariah (2013[Thomas, N. & Zachariah, S. M. (2013). Asian J. Pharm. Clin. Res. 6 (Suppl. 2), 11-15.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Narayanan et al. (2013[Narayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931-o932.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19BrN2O4

  • Mr = 407.26

  • Trigonal, [R \overline 3]

  • a = 24.2105 (13) Å

  • c = 15.7745 (9) Å

  • V = 8007.4 (8) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.446, Tmax = 0.496

  • 25281 measured reflections

  • 3206 independent reflections

  • 2565 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.09

  • 3206 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.83 (3) 2.00 (3) 2.618 (3) 130 (3)
N2—H2N⋯O4i 0.83 (3) 2.38 (3) 2.969 (3) 129 (3)
Symmetry code: (i) [x-y+{\script{1\over 3}}, x-{\script{1\over 3}}, -z+{\script{2\over 3}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chromene constitutes the basic backbone of various types of polyphenols and is widely found in natural alkaloids, tocopherols, flavonoids and anthocyanins. Natural and synthetic chromene derivatives possess important biological activities such as antitumor, antispasmolytic, antivascular, anticancer, anti-HIV, estrogenic and herbicidal activity. They also plays an important role in the production of highly effective fluorescent dyes for synthetic fibers, daylight fluorescent pigments and electrophotographic and electroluminescent devices (Thomas et al., 2013).

The title compound, Fig. 1, consists of a chromene unit connected to a bromophenyl ring at C7, a nitro group at C8, a methyl amine group at C9, an oxygen atom at C12 and a dimethyl group at C14. The mean plane of the chromene unit (O2/C7–C15) is almost normal to the benzene ring (C1–C6), with a dihedral angle of 85.61 (13)°. The mean plane of the chromene unit makes dihedral angles of 7.25 (21) and 2.89 (21)° with the nitro and methylamine groups, respectively.

The six membered carbocyclic ring (C10–C15) of the chromene moiety has an envelope conformation with puckering parameters (Cremer & Pople, 1975), of Puckering Amplitude (Q) = 0.459 (3) Å, θ = 124.1 (4) °, ϕ = 57.4 (5) °. Atom C14 deviates by -0.324 (3) Å from the mean plane passing through the other five C ring atoms. The sum of the angles around atom N1 (359.9 °) is in accordance with sp2 hybridization. The amine group nitrogen atoms, N1 and N2, deviate by -0.156 (2) and -0.0153 (3) Å from the mean plane of the chromene unit. The bromine atom, Br1, deviates from the benzene ring (C1–C6) by 0.0526 (5) Å. The methyl amine group attached to C9 is coplanar with the chromene unit as indicated by the torsion angle C18-N2-C9-O2 = 2.7 (4)°. The nitro group is also coplanar to the chromene unit, as indicated by the torsion angles O1-N1-C8-C7 = -5.5 (3)° and O3-N1-C8-C9 = -0.4 (4)°, respectively. The molecular structure is characterized by an intramolecular N—H···O hydrogen bond, which generates an S(6) ring motif (Bernstein et al., 1995). The title compound exhibits structural similarities with the related structure, 4-(4-Bromophenyl)-2-methylamino-3-nitro-5,6,7,8-tetrahydro-4H-chromen-5-one (Narayanan et al., 2013).

The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds forming hexagonal rings centered about a threefold rotation axis and lying parallel to the ab plane (Fig. 2 and Table 1). The amide N1 atom is involved in both intra and intermolecular hydrogen bonding, having a bifurcated character (Table 1).

Related literature top

For the biological and pharmacological properties of chromene and chromene derivatives, see: Thomas & Zachariah (2013). For graph-set notation, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975). For a related structure, see: Narayanan et al. (2013).

Experimental top

A solution of the 4-bromobenzaldehyde (1.0 mmol), 5,5- dimethylcyclohexane-1,3-dione (1.0 mmol), NMSM (1.0 mmol), and L-proline (0.2 equiv) in EtOH (2 ml) was stirred for the 2.3 h until the reaction was complete as indicated by TLC. The product obtained was filtered and washed with EtOH (2 ml) to remove the excess base and other impurities. Finally, the products were recrystallized from EtOH yielding block-like colourless crystals.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were placed in idealized positions and allowed to ride on the parent atoms: C—H = 0.93 - 0.97 Å with Uiso(H)= 1.5 Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. A region of disordered electron density, most probably disordered ethanol solvent molecules, occupying voids of ca 432 Å3 for an electron count of 158, was treated using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. The formula mass and unit-cell characteristics were not taken into account during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids drawn at the 30% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
4-(4-Bromophenyl)-7,7-dimethyl-2-methylamino-3-nitro-7,8-dihydro-4H-chromen-5(6H)-one top
Crystal data top
C18H19BrN2O4Dx = 1.520 Mg m3
Mr = 407.26Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 3206 reflections
Hall symbol: -R 3θ = 2.3–25.2°
a = 24.2105 (13) ŵ = 2.34 mm1
c = 15.7745 (9) ÅT = 293 K
V = 8007.4 (8) Å3Block, colourless
Z = 180.35 × 0.30 × 0.30 mm
F(000) = 3744
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3206 independent reflections
Radiation source: fine-focus sealed tube2565 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scanθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2829
Tmin = 0.446, Tmax = 0.496k = 2928
25281 measured reflectionsl = 1218
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0569P)2 + 9.8133P]
where P = (Fo2 + 2Fc2)/3
3206 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C18H19BrN2O4Z = 18
Mr = 407.26Mo Kα radiation
Trigonal, R3µ = 2.34 mm1
a = 24.2105 (13) ÅT = 293 K
c = 15.7745 (9) Å0.35 × 0.30 × 0.30 mm
V = 8007.4 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2565 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.496Rint = 0.035
25281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.68 e Å3
3206 reflectionsΔρmin = 0.61 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.212132 (19)0.139268 (18)0.68871 (2)0.06222 (17)
O10.43022 (10)0.17889 (10)0.40027 (13)0.0472 (5)
O20.26619 (8)0.05160 (8)0.21543 (11)0.0321 (4)
O30.42426 (10)0.09139 (10)0.35374 (13)0.0447 (5)
O40.27248 (10)0.24234 (10)0.29435 (14)0.0504 (5)
N10.40219 (10)0.12873 (11)0.35810 (13)0.0354 (5)
N20.32782 (12)0.01391 (11)0.25833 (16)0.0374 (6)
H2N0.3582 (17)0.0173 (16)0.287 (2)0.056 (10)*
C10.24640 (15)0.14478 (14)0.57850 (17)0.0399 (7)
C20.30235 (15)0.19826 (14)0.55683 (18)0.0439 (7)
H20.32380.23100.59580.053*
C30.32632 (14)0.20269 (13)0.47641 (17)0.0390 (7)
H30.36430.23890.46130.047*
C40.29519 (12)0.15445 (12)0.41766 (16)0.0301 (6)
C50.23957 (13)0.10049 (13)0.44189 (18)0.0397 (7)
H50.21860.06720.40350.048*
C60.21442 (15)0.09504 (15)0.52256 (19)0.0455 (7)
H60.17690.05870.53840.055*
C70.32208 (12)0.16060 (12)0.32833 (15)0.0293 (6)
H7A0.35730.20440.32090.035*
C80.34739 (12)0.11581 (12)0.31480 (15)0.0297 (6)
C90.31590 (12)0.06113 (12)0.26513 (16)0.0297 (6)
C100.24637 (12)0.09617 (12)0.21277 (15)0.0278 (6)
C110.27201 (11)0.14784 (12)0.26209 (15)0.0281 (5)
C120.24891 (12)0.19332 (12)0.25304 (16)0.0313 (6)
C130.19699 (12)0.17837 (12)0.18972 (17)0.0336 (6)
H13A0.21650.19940.13670.040*
H13B0.17140.19630.20990.040*
C140.15270 (12)0.10710 (13)0.17229 (17)0.0335 (6)
C150.19391 (12)0.07738 (13)0.15019 (17)0.0321 (6)
H15A0.16740.03130.14940.039*
H15B0.21190.09120.09400.039*
C160.10934 (15)0.09891 (16)0.0969 (2)0.0502 (8)
H16A0.08110.05430.08660.075*
H16B0.13500.11820.04750.075*
H16C0.08480.11910.10950.075*
C170.11220 (14)0.07477 (14)0.2504 (2)0.0458 (7)
H17A0.08500.03010.23930.069*
H17B0.08660.09370.26360.069*
H17C0.13950.08020.29760.069*
C180.29496 (15)0.04065 (14)0.2025 (2)0.0477 (8)
H18A0.30470.07300.21890.072*
H18B0.30860.02780.14520.072*
H18C0.24980.05730.20660.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0846 (3)0.0630 (3)0.0458 (2)0.0419 (2)0.02115 (17)0.00610 (15)
O10.0358 (11)0.0452 (13)0.0568 (13)0.0174 (10)0.0149 (10)0.0151 (10)
O20.0316 (10)0.0282 (10)0.0418 (10)0.0190 (8)0.0093 (8)0.0064 (8)
O30.0418 (12)0.0528 (13)0.0520 (12)0.0330 (11)0.0116 (9)0.0050 (10)
O40.0536 (13)0.0335 (12)0.0689 (14)0.0254 (10)0.0152 (11)0.0155 (10)
N10.0303 (12)0.0409 (14)0.0338 (12)0.0169 (12)0.0007 (10)0.0019 (10)
N20.0382 (14)0.0366 (14)0.0460 (13)0.0254 (12)0.0108 (11)0.0049 (11)
C10.0492 (18)0.0427 (17)0.0363 (14)0.0294 (15)0.0069 (13)0.0028 (12)
C20.0535 (19)0.0352 (16)0.0377 (15)0.0183 (15)0.0045 (14)0.0096 (12)
C30.0381 (16)0.0269 (15)0.0414 (15)0.0082 (13)0.0028 (12)0.0038 (11)
C40.0296 (14)0.0278 (14)0.0359 (13)0.0168 (12)0.0028 (11)0.0024 (11)
C50.0357 (16)0.0311 (15)0.0422 (15)0.0091 (13)0.0017 (12)0.0066 (12)
C60.0372 (17)0.0399 (17)0.0494 (17)0.0119 (14)0.0076 (13)0.0037 (14)
C70.0261 (13)0.0250 (13)0.0344 (13)0.0109 (11)0.0002 (10)0.0011 (11)
C80.0241 (13)0.0335 (14)0.0315 (13)0.0143 (12)0.0012 (10)0.0003 (11)
C90.0244 (13)0.0325 (14)0.0337 (13)0.0153 (12)0.0009 (10)0.0022 (11)
C100.0259 (13)0.0253 (13)0.0345 (13)0.0145 (11)0.0022 (10)0.0019 (10)
C110.0238 (13)0.0261 (14)0.0343 (13)0.0125 (11)0.0019 (10)0.0011 (11)
C120.0302 (14)0.0252 (14)0.0386 (14)0.0140 (12)0.0026 (11)0.0001 (11)
C130.0338 (15)0.0304 (14)0.0423 (15)0.0203 (13)0.0041 (12)0.0037 (12)
C140.0286 (14)0.0297 (14)0.0445 (15)0.0164 (12)0.0025 (12)0.0002 (11)
C150.0308 (14)0.0314 (14)0.0371 (14)0.0177 (12)0.0062 (11)0.0057 (11)
C160.0410 (17)0.0495 (19)0.067 (2)0.0275 (16)0.0180 (15)0.0085 (16)
C170.0321 (16)0.0385 (17)0.0652 (19)0.0164 (14)0.0095 (14)0.0054 (14)
C180.0516 (19)0.0396 (17)0.0617 (19)0.0302 (16)0.0143 (15)0.0141 (15)
Geometric parameters (Å, º) top
Br1—C11.902 (3)C7—H7A0.9800
O1—N11.247 (3)C8—C91.392 (4)
O2—C91.356 (3)C10—C111.334 (3)
O2—C101.384 (3)C10—C151.489 (3)
O3—N11.261 (3)C11—C121.470 (4)
O4—C121.217 (3)C12—C131.501 (4)
N1—C81.382 (3)C13—C141.534 (4)
N2—C91.316 (3)C13—H13A0.9700
N2—C181.450 (4)C13—H13B0.9700
N2—H2N0.83 (3)C14—C171.525 (4)
C1—C21.369 (4)C14—C161.532 (4)
C1—C61.377 (4)C14—C151.534 (4)
C2—C31.377 (4)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.382 (4)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.381 (4)C16—H16C0.9600
C4—C71.528 (3)C17—H17A0.9600
C5—C61.388 (4)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C6—H60.9300C18—H18A0.9600
C7—C81.504 (4)C18—H18B0.9600
C7—C111.511 (3)C18—H18C0.9600
C9—O2—C10120.62 (19)C10—C11—C7123.0 (2)
O1—N1—O3120.5 (2)C12—C11—C7118.7 (2)
O1—N1—C8118.5 (2)O4—C12—C11120.7 (2)
O3—N1—C8120.9 (2)O4—C12—C13121.3 (2)
C9—N2—C18125.6 (2)C11—C12—C13118.1 (2)
C9—N2—H2N116 (2)C12—C13—C14114.9 (2)
C18—N2—H2N119 (2)C12—C13—H13A108.6
C2—C1—C6121.7 (3)C14—C13—H13A108.6
C2—C1—Br1119.0 (2)C12—C13—H13B108.6
C6—C1—Br1119.3 (2)C14—C13—H13B108.6
C1—C2—C3118.9 (3)H13A—C13—H13B107.5
C1—C2—H2120.6C17—C14—C16109.7 (2)
C3—C2—H2120.6C17—C14—C15110.2 (2)
C2—C3—C4121.4 (3)C16—C14—C15109.1 (2)
C2—C3—H3119.3C17—C14—C13109.9 (2)
C4—C3—H3119.3C16—C14—C13109.5 (2)
C5—C4—C3118.4 (2)C15—C14—C13108.4 (2)
C5—C4—C7120.9 (2)C10—C15—C14111.2 (2)
C3—C4—C7120.7 (2)C10—C15—H15A109.4
C4—C5—C6121.2 (3)C14—C15—H15A109.4
C4—C5—H5119.4C10—C15—H15B109.4
C6—C5—H5119.4C14—C15—H15B109.4
C1—C6—C5118.4 (3)H15A—C15—H15B108.0
C1—C6—H6120.8C14—C16—H16A109.5
C5—C6—H6120.8C14—C16—H16B109.5
C8—C7—C11109.2 (2)H16A—C16—H16B109.5
C8—C7—C4111.6 (2)C14—C16—H16C109.5
C11—C7—C4111.0 (2)H16A—C16—H16C109.5
C8—C7—H7A108.3H16B—C16—H16C109.5
C11—C7—H7A108.3C14—C17—H17A109.5
C4—C7—H7A108.3C14—C17—H17B109.5
N1—C8—C9120.0 (2)H17A—C17—H17B109.5
N1—C8—C7117.3 (2)C14—C17—H17C109.5
C9—C8—C7122.6 (2)H17A—C17—H17C109.5
N2—C9—O2111.5 (2)H17B—C17—H17C109.5
N2—C9—C8128.2 (2)N2—C18—H18A109.5
O2—C9—C8120.3 (2)N2—C18—H18B109.5
C11—C10—O2122.2 (2)H18A—C18—H18B109.5
C11—C10—C15126.8 (2)N2—C18—H18C109.5
O2—C10—C15110.9 (2)H18A—C18—H18C109.5
C10—C11—C12118.2 (2)H18B—C18—H18C109.5
C6—C1—C2—C31.3 (5)C7—C8—C9—N2169.2 (3)
Br1—C1—C2—C3178.6 (2)N1—C8—C9—O2172.9 (2)
C1—C2—C3—C40.1 (5)C7—C8—C9—O211.0 (4)
C2—C3—C4—C51.3 (4)C9—O2—C10—C114.3 (4)
C2—C3—C4—C7179.2 (3)C9—O2—C10—C15176.5 (2)
C3—C4—C5—C61.5 (4)O2—C10—C11—C12178.4 (2)
C7—C4—C5—C6179.0 (3)C15—C10—C11—C122.6 (4)
C2—C1—C6—C51.2 (5)O2—C10—C11—C73.5 (4)
Br1—C1—C6—C5178.8 (2)C15—C10—C11—C7175.5 (2)
C4—C5—C6—C10.3 (5)C8—C7—C11—C1012.9 (3)
C5—C4—C7—C869.8 (3)C4—C7—C11—C10110.6 (3)
C3—C4—C7—C8109.7 (3)C8—C7—C11—C12169.0 (2)
C5—C4—C7—C1152.3 (3)C4—C7—C11—C1267.5 (3)
C3—C4—C7—C11128.2 (3)C10—C11—C12—O4177.2 (3)
O1—N1—C8—C9178.2 (2)C7—C11—C12—O44.6 (4)
O3—N1—C8—C90.4 (4)C10—C11—C12—C131.0 (3)
O1—N1—C8—C75.5 (3)C7—C11—C12—C13177.2 (2)
O3—N1—C8—C7176.0 (2)O4—C12—C13—C14154.1 (3)
C11—C7—C8—N1167.3 (2)C11—C12—C13—C1427.6 (3)
C4—C7—C8—N169.6 (3)C12—C13—C14—C1768.6 (3)
C11—C7—C8—C916.5 (3)C12—C13—C14—C16170.8 (2)
C4—C7—C8—C9106.6 (3)C12—C13—C14—C1551.9 (3)
C18—N2—C9—O22.7 (4)C11—C10—C15—C1423.9 (4)
C18—N2—C9—C8177.2 (3)O2—C10—C15—C14155.2 (2)
C10—O2—C9—N2179.4 (2)C17—C14—C15—C1071.9 (3)
C10—O2—C9—C80.5 (3)C16—C14—C15—C10167.6 (2)
N1—C8—C9—N26.9 (4)C13—C14—C15—C1048.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.83 (3)2.00 (3)2.618 (3)130 (3)
N2—H2N···O4i0.83 (3)2.38 (3)2.969 (3)129 (3)
Symmetry code: (i) xy+1/3, x1/3, z+2/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.83 (3)2.00 (3)2.618 (3)130 (3)
N2—H2N···O4i0.83 (3)2.38 (3)2.969 (3)129 (3)
Symmetry code: (i) xy+1/3, x1/3, z+2/3.
 

Acknowledgements

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Kamalraja, J., Perumal, P. T. & Sethusankar, K. (2013). Acta Cryst. E69, o931–o932.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, N. & Zachariah, S. M. (2013). Asian J. Pharm. Clin. Res. 6 (Suppl. 2), 11–15.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o579-o580
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds