organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o608-o609

(2E)-1-(3,5-Di­hy­droxy­phen­yl)-3-(4-meth­­oxy­phen­yl)prop-2-en-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bPG and Research Department of Chemistry, Presidency College, Chennai-5, Tamil Nadu, India
*Correspondence e-mail: guqmc@yahoo.com

(Received 16 April 2014; accepted 23 April 2014; online 26 April 2014)

In the title compound, C16H14O4, the benzene rings are inclined to one another by 4.91 (7)°. The conformation about the C=O and C=C bonds is trans and cis, respectively. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. The dimers are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming undulating two-dimensional networks lying parallel to (10-1). These networks are linked by further C—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature

For the biological activity of chalcone derivatives, see: Shenvi et al. (2013[Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435-442.]); Sharma et al. (2012[Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343-6346.]); Hsieh et al. (2012[Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912-3915.]); Sashidhara et al. (2011[Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484.]). For related structures, see: Ahn et al. (2013[Ahn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.]). For standard bend lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis, see: Shettigar et al. (2006[Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara, J. (2006). J. Cryst. Growth, 295, 44-49.]); Patil et al. (2007[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, V., Fun, H.-K., Kumar, R. S. S. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520-524.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O4

  • Mr = 270.28

  • Monoclinic, P 21 /n

  • a = 9.1920 (9) Å

  • b = 13.8931 (13) Å

  • c = 10.9299 (10) Å

  • β = 106.619 (2)°

  • V = 1337.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.981

  • 13378 measured reflections

  • 3402 independent reflections

  • 2617 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.137

  • S = 0.91

  • 3384 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.90 2.7196 (15) 174
O3—H3A⋯O2ii 0.82 2.03 2.8361 (14) 167
C3—H3⋯O2ii 0.93 2.59 3.2875 (17) 132
C5—H5⋯O1i 0.93 2.43 3.1498 (17) 134
C12—H12⋯O4iii 0.93 2.47 3.3926 (16) 169
Symmetry codes: (i) -x+1, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z-2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are one of the secondary metabolites in plants and belong to a class of flavonoid. They have shown diverse biological activities including anticancer (Shenvi et al., 2013), antimicrobial (Sharma et al. 2012), antidiabetic (Hsieh et al., 2012) and antiinflammatory (Sashidhara et al., 2011). As part of our attempt to investigate how the substituent effects of chalcones effect the biological activities of various compounds, the title compound was synthesized and its crystal structure is reported herein.

The molecuar structure of the title compound is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal values. The benzene rings (C1-C6 and C10-C15) are inclined to one another by 4.91 (7) °. The torsion angles about the C7O1 and C8C9 bonds confirm the trans and cis conformations of the respective bonds. The C8 C9 bond distance is 1.332 (2) Å, and is in good agreement with the value [1.329 (3) Å] reported for a similar structure (Ahn et al., 2013). The methoxy C atom and hydroxy O atoms are almost coplanar with the benezene ring to which they are attached. The bond angles C4—C7—C8 = 120.4 (1)° and C8—C9—C10 = 128.2 (1)° differ slightly from the normal values but are comparable with the values reported for a similar structure (Jasinski et al., 2011).

In the crystal, molecules are linked by O—H···O hydrogen bonds forming inversion dimers with a graph set motif of R22(14) [Bernstein et al., 1995]. The dimers are linked by O-H···O and C-H···O hydrogen bonds forming undulating two-dimensional networks lying parallel to (10-1) [Fig. 2 and Table 1]. These networks are linked by further C-H···O hydrogen bonds forming a three-dimensional structure (Table 1).

Related literature top

For the biological activity of chalcone derivatives, see: Shenvi et al. (2013); Sharma et al. (2012); Hsieh et al. (2012); Sashidhara et al. (2011). For related structures, see: Ahn et al. (2013); Jasinski et al. (2011). For standard bend lengths, see: Allen et al. (1987). For the synthesis, see: Shettigar et al. (2006); Patil et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was syntheized by the base catalyzed Claisen-Schmidt reaction according to the published procedures (Shettigar et al., 2006; Patil et al., 2007). In a 250 ml round-bottomed flask 3,5-hydroxyacetophenone (0.05 mol) and 4-methoxybenzaldehyde (0.05 mol) were placed and 120 ml of absolute alcohol were added. The mixture was stirred at room temperature for 5 min. Then 20 ml of 20% sodium hydroxide solution was added and the mixture was stirred for 2 h. The precipitate generated by adding a sufficient amount of dilute hydrochloric acid was filtered, washed with water and dried. The crude product was recrystallized twice from absolute alcohol yielding colourless block-like crystals (Yield 79%; M.p. 477 K).

Refinement top

H atoms were positioned geometrically and treated as riding atoms: O—H = 0.82 Å, C—H =0.93 – 0.96 Å, with Uiso(H)= 1.5Ueq(O and C-methyl) and = 1.2Ueq(C) for other H atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The dashed lines indicate the hydrogen bonds (see Table 1 for details).
(2E)-1-(3,5-Dihydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H14O4F(000) = 568
Mr = 270.28Dx = 1.342 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3402 reflections
a = 9.1920 (9) Åθ = 2.4–28.5°
b = 13.8931 (13) ŵ = 0.10 mm1
c = 10.9299 (10) ÅT = 293 K
β = 106.619 (2)°Block, colourless
V = 1337.5 (2) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3402 independent reflections
Radiation source: fine-focus sealed tube2617 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1012
Tmin = 0.979, Tmax = 0.981k = 1818
13378 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0868P)2 + 0.2822P]
where P = (Fo2 + 2Fc2)/3
3384 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H14O4V = 1337.5 (2) Å3
Mr = 270.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1920 (9) ŵ = 0.10 mm1
b = 13.8931 (13) ÅT = 293 K
c = 10.9299 (10) Å0.22 × 0.20 × 0.20 mm
β = 106.619 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2617 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.032
13378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.91Δρmax = 0.22 e Å3
3384 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24996 (15)0.22432 (10)0.12529 (12)0.0470 (3)
H10.24570.25500.19980.056*
C20.15728 (15)0.25425 (10)0.00768 (12)0.0447 (3)
C30.16469 (14)0.20929 (10)0.10413 (11)0.0429 (3)
H30.10170.22920.18270.051*
C40.26647 (14)0.13466 (9)0.09755 (11)0.0404 (3)
C50.35787 (15)0.10425 (10)0.01976 (11)0.0431 (3)
H50.42580.05380.02430.052*
C60.34818 (14)0.14885 (10)0.13033 (11)0.0427 (3)
C70.28664 (15)0.08504 (10)0.21300 (12)0.0455 (3)
C80.18574 (15)0.10638 (10)0.33903 (11)0.0440 (3)
H80.10700.15020.34730.053*
C90.20462 (15)0.06396 (10)0.44272 (12)0.0456 (3)
H90.28550.02120.42890.055*
C100.11515 (14)0.07605 (9)0.57409 (11)0.0414 (3)
C110.14639 (15)0.01784 (10)0.66808 (12)0.0461 (3)
H110.22500.02670.64480.055*
C120.06338 (16)0.02522 (10)0.79376 (12)0.0474 (3)
H120.08490.01470.85470.057*
C130.05233 (15)0.09213 (10)0.82969 (11)0.0423 (3)
C140.08502 (16)0.15125 (11)0.73877 (12)0.0477 (3)
H140.16230.19670.76270.057*
C150.00197 (16)0.14207 (10)0.61259 (12)0.0474 (3)
H150.02520.18120.55170.057*
C160.24683 (19)0.16157 (14)0.99921 (14)0.0642 (4)
H16A0.28930.15541.08990.096*
H16B0.20830.22570.97920.096*
H16C0.32400.14920.95780.096*
O10.39025 (14)0.02703 (10)0.19868 (9)0.0712 (4)
O20.43646 (11)0.11864 (8)0.24713 (8)0.0539 (3)
H20.48980.07360.23770.081*
O30.06007 (13)0.32813 (8)0.00670 (10)0.0626 (3)
H3A0.01100.33990.06710.094*
O40.12717 (12)0.09454 (8)0.95602 (9)0.0559 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0550 (7)0.0512 (8)0.0324 (6)0.0020 (6)0.0088 (5)0.0046 (5)
C20.0490 (7)0.0439 (7)0.0394 (6)0.0002 (5)0.0098 (5)0.0002 (5)
C30.0462 (6)0.0460 (7)0.0327 (6)0.0006 (5)0.0052 (5)0.0019 (5)
C40.0452 (6)0.0422 (7)0.0303 (5)0.0040 (5)0.0051 (5)0.0014 (4)
C50.0463 (6)0.0459 (7)0.0321 (6)0.0004 (5)0.0033 (5)0.0018 (5)
C60.0462 (6)0.0480 (7)0.0290 (5)0.0075 (5)0.0027 (5)0.0010 (5)
C70.0523 (7)0.0479 (7)0.0312 (6)0.0038 (5)0.0035 (5)0.0010 (5)
C80.0495 (7)0.0465 (7)0.0312 (6)0.0022 (5)0.0036 (5)0.0003 (5)
C90.0508 (7)0.0479 (7)0.0336 (6)0.0053 (5)0.0048 (5)0.0008 (5)
C100.0479 (6)0.0437 (7)0.0302 (5)0.0002 (5)0.0073 (5)0.0022 (5)
C110.0519 (7)0.0478 (7)0.0378 (6)0.0087 (6)0.0116 (5)0.0020 (5)
C120.0592 (7)0.0504 (8)0.0337 (6)0.0040 (6)0.0149 (5)0.0068 (5)
C130.0503 (7)0.0463 (7)0.0282 (5)0.0033 (5)0.0081 (5)0.0024 (5)
C140.0536 (7)0.0487 (8)0.0366 (6)0.0107 (6)0.0062 (5)0.0043 (5)
C150.0574 (8)0.0496 (7)0.0322 (6)0.0086 (6)0.0079 (5)0.0079 (5)
C160.0666 (10)0.0746 (11)0.0406 (7)0.0090 (8)0.0018 (6)0.0036 (7)
O10.0817 (8)0.0862 (9)0.0363 (5)0.0398 (7)0.0017 (5)0.0036 (5)
O20.0619 (6)0.0627 (6)0.0286 (4)0.0080 (5)0.0006 (4)0.0031 (4)
O30.0747 (7)0.0664 (7)0.0434 (5)0.0224 (5)0.0116 (5)0.0024 (5)
O40.0678 (6)0.0644 (7)0.0293 (4)0.0076 (5)0.0036 (4)0.0044 (4)
Geometric parameters (Å, º) top
C1—C61.374 (2)C10—C151.3850 (18)
C1—C21.3873 (18)C10—C111.4002 (17)
C1—H10.9300C11—C121.3712 (17)
C2—O31.3589 (16)C11—H110.9300
C2—C31.3913 (18)C12—C131.3823 (19)
C3—C41.3846 (18)C12—H120.9300
C3—H30.9300C13—O41.3555 (14)
C4—C51.3829 (16)C13—C141.3868 (18)
C4—C71.4952 (18)C14—C151.3780 (17)
C5—C61.3835 (17)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—O21.3681 (14)C16—O41.4152 (19)
C7—O11.2230 (16)C16—H16A0.9600
C7—C81.4542 (16)C16—H16B0.9600
C8—C91.3320 (18)C16—H16C0.9600
C8—H80.9300O2—H20.8200
C9—C101.4460 (16)O3—H3A0.8200
C9—H90.9300
C6—C1—C2119.21 (12)C15—C10—C11117.67 (11)
C6—C1—H1120.4C15—C10—C9123.40 (11)
C2—C1—H1120.4C11—C10—C9118.93 (12)
O3—C2—C1117.50 (12)C12—C11—C10121.31 (12)
O3—C2—C3121.97 (12)C12—C11—H11119.3
C1—C2—C3120.53 (12)C10—C11—H11119.3
C4—C3—C2119.52 (11)C11—C12—C13119.83 (12)
C4—C3—H3120.2C11—C12—H12120.1
C2—C3—H3120.2C13—C12—H12120.1
C5—C4—C3119.95 (12)O4—C13—C12115.54 (11)
C5—C4—C7116.91 (12)O4—C13—C14124.36 (12)
C3—C4—C7123.12 (11)C12—C13—C14120.10 (11)
C4—C5—C6119.95 (12)C15—C14—C13119.39 (12)
C4—C5—H5120.0C15—C14—H14120.3
C6—C5—H5120.0C13—C14—H14120.3
O2—C6—C1118.62 (11)C14—C15—C10121.69 (12)
O2—C6—C5120.56 (12)C14—C15—H15119.2
C1—C6—C5120.82 (11)C10—C15—H15119.2
O1—C7—C8121.19 (12)O4—C16—H16A109.5
O1—C7—C4118.41 (11)O4—C16—H16B109.5
C8—C7—C4120.40 (12)H16A—C16—H16B109.5
C9—C8—C7120.85 (12)O4—C16—H16C109.5
C9—C8—H8119.6H16A—C16—H16C109.5
C7—C8—H8119.6H16B—C16—H16C109.5
C8—C9—C10128.17 (13)C6—O2—H2109.5
C8—C9—H9115.9C2—O3—H3A109.5
C10—C9—H9115.9C13—O4—C16118.40 (11)
C6—C1—C2—O3179.03 (12)C4—C7—C8—C9178.67 (13)
C6—C1—C2—C30.8 (2)C7—C8—C9—C10179.53 (13)
O3—C2—C3—C4179.68 (12)C8—C9—C10—C155.0 (2)
C1—C2—C3—C40.6 (2)C8—C9—C10—C11174.38 (14)
C2—C3—C4—C51.14 (19)C15—C10—C11—C120.5 (2)
C2—C3—C4—C7177.38 (12)C9—C10—C11—C12178.91 (13)
C3—C4—C5—C60.4 (2)C10—C11—C12—C130.9 (2)
C7—C4—C5—C6178.19 (12)C11—C12—C13—O4179.54 (12)
C2—C1—C6—O2178.54 (12)C11—C12—C13—C140.4 (2)
C2—C1—C6—C51.5 (2)O4—C13—C14—C15179.57 (13)
C4—C5—C6—O2179.12 (12)C12—C13—C14—C150.5 (2)
C4—C5—C6—C10.9 (2)C13—C14—C15—C100.9 (2)
C5—C4—C7—O16.2 (2)C11—C10—C15—C140.4 (2)
C3—C4—C7—O1172.31 (14)C9—C10—C15—C14179.79 (14)
C5—C4—C7—C8174.30 (12)C12—C13—O4—C16179.90 (14)
C3—C4—C7—C87.1 (2)C14—C13—O4—C160.0 (2)
O1—C7—C8—C90.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.902.7196 (15)174
O3—H3A···O2ii0.822.032.8361 (14)167
C3—H3···O2ii0.932.593.2875 (17)132
C5—H5···O1i0.932.433.1498 (17)134
C12—H12···O4iii0.932.473.3926 (16)169
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.902.7196 (15)174
O3—H3A···O2ii0.822.032.8361 (14)167
C3—H3···O2ii0.932.593.2875 (17)132
C5—H5···O1i0.932.433.1498 (17)134
C12—H12···O4iii0.932.473.3926 (16)169
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x, y, z2.
 

Acknowledgements

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationAhn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666.  CSD CrossRef IUCr Journals
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912–3915.  Web of Science CrossRef CAS PubMed
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845.  Web of Science CSD CrossRef IUCr Journals
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, V., Fun, H.-K., Kumar, R. S. S. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS
First citationSashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484.  Web of Science CrossRef CAS PubMed
First citationSharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343–6346.  Web of Science CrossRef CAS PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442.  Web of Science CrossRef CAS PubMed
First citationShettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara, J. (2006). J. Cryst. Growth, 295, 44–49.  Web of Science CrossRef CAS
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o608-o609
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds