organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Fluoro-4-oxo-4H-chromene-3-carbalde­hyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 14 April 2014; accepted 15 April 2014; online 18 April 2014)

In the title compound, C10H5FO3, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0071 Å), with the largest deviation from the mean plane [0.0203 (15) Å] being found for the ring C atom in the 2-position. In the crystal, mol­ecules are linked into a three-dimensional architecture via C—H⋯O hydrogen bonds and ππ stacking inter­actions between the chromone units along the a-axis direction [centroid–centroid distance between the benzene and pyran rings = 3.707 (2) Å].

Related literature

For related structures, see: Ishikawa (2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o555.],b[Ishikawa, Y. (2014b). Acta Cryst. E70, o514.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5FO3

  • Mr = 192.15

  • Monoclinic, P 21 /n

  • a = 7.8530 (19) Å

  • b = 5.6020 (17) Å

  • c = 17.987 (5) Å

  • β = 95.09 (2)°

  • V = 788.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.12 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 2412 measured reflections

  • 1815 independent reflections

  • 1496 reflections with F2 > 2σ(F2)

  • Rint = 0.024

  • 3 standard reflections every 150 reflections intensity decay: 3.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.106

  • S = 1.03

  • 1815 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.95 2.37 3.308 (2) 171
C4—H2⋯O2ii 0.95 2.35 3.235 (2) 154
C6—H3⋯O3iii 0.95 2.48 3.198 (2) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y-1, -z+1; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonds have been found to occur in organic, inorganic and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supra­molecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of monohalogenated 3-formyl­chromone derivatives 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b). Halogen bonding is observed in the former, but is not observed in the latter. As part of our inter­est in this type of chemical bonding, we herein report the crystal structure of a monofluorinated 3-formyl­chromone derivative, 6-fluoro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of this compound with a fluorine atom at the 6-position.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0071 Å, and the largest deviation is 0.0203 (15) Å for C1 (Fig. 1). This mean that the atoms are essentially coplanar. In the crystal, the molecules are linked via C—H···O hydrogen bonds and are further linked by ππ stacking inter­actions between the chromone units [centroid–centroid distance between the benzene and pyran rings = 3.707 (2) Å], into a three-dimensional architectureFig. 1. The distance between the fluorine and proximal formyl oxygen atoms [3.498 (2) Å, Fig.2 (bottom)] is far from halogen bonding. The fact that halogen bonding is observed in the crystal structure of 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig. 2 (top)) but is not observed in those of 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig. 2 (middle)) and the title compound demonstrates the trend of the size of σ-hole on halogens (Br > Cl > F; Sirimulla et al., 2013).

Synthesis and crystallization top

Single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of an ethyl acetate solution of the commercially available title compound.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C—H = 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (0 1 1) was omitted because of systematic error.

Related literature top

For related structures, see: Ishikawa (2014a,b). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A packing view of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius. The shortest intermolecular C—H···O hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Sphere models of the crystal structures of 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (top), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (middle), and the title compound (bottom).
6-Fluoro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5FO3F(000) = 392.00
Mr = 192.15Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.8530 (19) Åθ = 15.2–17.3°
b = 5.6020 (17) ŵ = 0.14 mm1
c = 17.987 (5) ÅT = 100 K
β = 95.09 (2)°Plate, colourless
V = 788.2 (4) Å30.30 × 0.20 × 0.12 mm
Z = 4
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 1010
2412 measured reflectionsk = 47
1815 independent reflectionsl = 2313
1496 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.024 intensity decay: 3.4%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3686P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1815 reflectionsΔρmax = 0.37 e Å3
128 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Secondary atom site location: difference Fourier map
Crystal data top
C10H5FO3V = 788.2 (4) Å3
Mr = 192.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8530 (19) ŵ = 0.14 mm1
b = 5.6020 (17) ÅT = 100 K
c = 17.987 (5) Å0.30 × 0.20 × 0.12 mm
β = 95.09 (2)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.024
2412 measured reflections3 standard reflections every 150 reflections
1815 independent reflections intensity decay: 3.4%
1496 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
1815 reflectionsΔρmin = 0.22 e Å3
128 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.24629 (11)0.31171 (17)0.68919 (5)0.0261 (3)
O10.33585 (12)0.28450 (17)0.45542 (5)0.0178 (3)
O20.05794 (13)0.32557 (18)0.41030 (5)0.0205 (3)
O30.13190 (13)0.13025 (19)0.23839 (5)0.0226 (3)
C10.26630 (17)0.2332 (3)0.38638 (8)0.0169 (3)
C20.17422 (16)0.0346 (3)0.36799 (7)0.0155 (3)
C30.14094 (16)0.1427 (3)0.42424 (7)0.0147 (3)
C40.19425 (16)0.2340 (3)0.56069 (7)0.0163 (3)
C50.26679 (17)0.1674 (3)0.62980 (7)0.0185 (3)
C60.36078 (17)0.0417 (3)0.64257 (8)0.0191 (3)
C70.38313 (17)0.1905 (3)0.58328 (8)0.0182 (3)
C80.21614 (16)0.0827 (3)0.50018 (7)0.0142 (3)
C90.30989 (16)0.1270 (3)0.51258 (7)0.0147 (3)
C100.10652 (17)0.0034 (3)0.28948 (7)0.0187 (3)
H10.28300.34420.34780.0203*
H20.13110.37820.55410.0195*
H30.40870.08100.69140.0229*
H40.44720.33380.59040.0218*
H50.03880.14140.27830.0224*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0315 (5)0.0312 (5)0.0153 (5)0.0033 (4)0.0012 (4)0.0069 (4)
O10.0222 (5)0.0154 (5)0.0157 (5)0.0035 (4)0.0014 (4)0.0000 (4)
O20.0223 (5)0.0183 (5)0.0204 (5)0.0056 (4)0.0003 (4)0.0014 (4)
O30.0293 (6)0.0222 (6)0.0161 (5)0.0045 (5)0.0013 (4)0.0016 (4)
C10.0186 (7)0.0171 (7)0.0153 (6)0.0018 (5)0.0033 (5)0.0010 (5)
C20.0146 (6)0.0166 (7)0.0154 (7)0.0024 (5)0.0026 (5)0.0014 (5)
C30.0125 (6)0.0151 (6)0.0167 (7)0.0024 (5)0.0021 (5)0.0014 (5)
C40.0149 (6)0.0163 (7)0.0178 (7)0.0001 (5)0.0029 (5)0.0001 (6)
C50.0192 (7)0.0215 (7)0.0152 (7)0.0032 (6)0.0042 (5)0.0033 (6)
C60.0177 (6)0.0246 (8)0.0147 (6)0.0027 (6)0.0003 (5)0.0034 (6)
C70.0163 (7)0.0177 (7)0.0204 (7)0.0002 (5)0.0010 (5)0.0051 (6)
C80.0120 (6)0.0154 (6)0.0154 (7)0.0019 (5)0.0023 (5)0.0015 (5)
C90.0146 (6)0.0151 (7)0.0149 (6)0.0016 (5)0.0032 (5)0.0002 (5)
C100.0190 (7)0.0197 (7)0.0171 (7)0.0024 (6)0.0005 (5)0.0015 (6)
Geometric parameters (Å, º) top
F1—C51.3606 (17)C4—C81.4020 (19)
O1—C11.3427 (17)C5—C61.393 (2)
O1—C91.3835 (17)C6—C71.377 (2)
O2—C31.2282 (17)C7—C91.3946 (19)
O3—C101.2155 (17)C8—C91.394 (2)
C1—C21.352 (2)C1—H10.950
C2—C31.4579 (19)C4—H20.950
C2—C101.4796 (18)C6—H30.950
C3—C81.4780 (18)C7—H40.950
C4—C51.3723 (18)C10—H50.950
O1···C32.8691 (18)C4···H33.2823
O2···C13.576 (2)C5···H43.2513
O2···C42.8658 (17)C6···H23.2881
O2···C102.8760 (18)C8···H43.2937
O3···C12.8344 (19)C9···H13.1941
C1···C73.587 (3)C9···H23.2746
C1···C82.760 (2)C9···H33.2509
C2···C92.7704 (19)C10···H12.5600
C4···C72.813 (2)H1···H53.4953
C5···C92.721 (2)H3···H42.3436
C6···C82.796 (2)F1···H3i2.6307
F1···F1i3.5513 (16)F1···H4vi3.1761
F1···F1ii3.5513 (16)F1···H5iv3.4684
F1···O2iii3.5044 (15)F1···H5v2.6941
F1···O3iv3.4981 (16)O1···H2vii3.1318
F1···O3v3.5584 (16)O1···H4xiv2.8987
F1···C6i3.315 (2)O2···H1vi2.8570
F1···C7vi3.5947 (19)O2···H2iii2.3533
F1···C10iv3.3360 (18)O3···H1x2.3664
F1···C10v3.3800 (18)O3···H3xii2.4781
O1···O2vii3.1431 (15)O3···H4xii2.9229
O1···C3vii3.5781 (19)O3···H5xi2.9244
O1···C4vii3.5315 (19)C1···H2iv3.4844
O1···C6viii3.5869 (19)C1···H3viii3.4931
O1···C7viii3.5649 (19)C1···H4xiv3.3095
O2···F1iii3.5044 (15)C1···H5xi3.5228
O2···O1vi3.1431 (15)C2···H2iv3.4665
O2···C1vi3.0162 (19)C2···H3viii3.5928
O2···C4iii3.2351 (19)C3···H1vi3.4163
O2···C7iv3.5572 (19)C3···H2iii3.4741
O2···C9iv3.4951 (19)C3···H4viii3.4389
O3···F1iv3.4981 (16)C4···H4vi3.1477
O3···F1ix3.5584 (16)C5···H4vi3.2399
O3···O3x3.3650 (17)C5···H5iv3.4912
O3···O3xi3.3650 (17)C5···H5v3.4391
O3···C1x3.3077 (19)C6···H1viii3.5277
O3···C2xi3.4099 (18)C6···H5v3.5118
O3···C6xii3.1985 (18)C7···H2vii3.1377
O3···C7xii3.4120 (19)C8···H4viii3.5193
O3···C10xi2.9773 (19)C9···H2vii3.2243
C1···O2vii3.0162 (19)C10···H1x2.8205
C1···O3xi3.3077 (19)C10···H3xii3.2620
C1···C6viii3.390 (2)H1···O2vii2.8570
C2···O3x3.4099 (18)H1···O3xi2.3664
C2···C4iv3.453 (2)H1···C3vii3.4163
C2···C5iv3.546 (2)H1···C6viii3.5277
C3···O1vi3.5781 (19)H1···C10xi2.8205
C3···C4iv3.403 (2)H1···H3viii3.5122
C3···C8iv3.461 (2)H1···H4xiv2.9261
C4···O1vi3.5315 (19)H1···H5xi2.7690
C4···O2iii3.2351 (19)H2···O1vi3.1318
C4···C2iv3.453 (2)H2···O2iii2.3533
C4···C3iv3.403 (2)H2···C1iv3.4844
C4···C7vi3.557 (3)H2···C2iv3.4665
C5···C2iv3.546 (2)H2···C3iii3.4741
C5···C10iv3.517 (2)H2···C7vi3.1377
C6···F1ii3.315 (2)H2···C9vi3.2243
C6···O1viii3.5869 (19)H2···H2iii3.0288
C6···O3xiii3.1985 (18)H2···H4vi2.9843
C6···C1viii3.390 (2)H3···F1ii2.6307
C7···F1vii3.5947 (19)H3···O3xiii2.4781
C7···O1viii3.5649 (19)H3···C1viii3.4931
C7···O2iv3.5572 (19)H3···C2viii3.5928
C7···O3xiii3.4120 (19)H3···C10xiii3.2620
C7···C4vii3.557 (3)H3···H1viii3.5122
C7···C9viii3.562 (2)H3···H5v3.0440
C8···C3iv3.461 (2)H4···F1vii3.1761
C8···C8iv3.518 (2)H4···O1xiv2.8987
C9···O2iv3.4951 (19)H4···O3xiii2.9229
C9···C7viii3.562 (2)H4···C1xiv3.3095
C9···C9viii3.374 (2)H4···C3viii3.4389
C10···F1iv3.3360 (18)H4···C4vii3.1477
C10···F1ix3.3800 (18)H4···C5vii3.2399
C10···O3x2.9773 (19)H4···C8viii3.5193
C10···C5iv3.517 (2)H4···H1xiv2.9261
F1···H22.5447H4···H2vii2.9843
F1···H32.5415H5···F1iv3.4684
O1···H42.5219H5···F1ix2.6941
O2···H22.6151H5···O3x2.9244
O2···H52.5814H5···C1x3.5228
O3···H12.5100H5···C5iv3.4912
C1···H53.2808H5···C5ix3.4391
C3···H13.2935H5···C6ix3.5118
C3···H22.6889H5···H1x2.7690
C3···H52.6767H5···H3ix3.0440
C1—O1—C9118.43 (11)C4—C8—C9118.99 (12)
O1—C1—C2124.57 (13)O1—C9—C7116.03 (12)
C1—C2—C3121.05 (12)O1—C9—C8121.94 (11)
C1—C2—C10119.43 (13)C7—C9—C8122.02 (13)
C3—C2—C10119.53 (12)O3—C10—C2124.30 (13)
O2—C3—C2123.45 (12)O1—C1—H1117.713
O2—C3—C8122.66 (12)C2—C1—H1117.717
C2—C3—C8113.89 (12)C5—C4—H2121.008
C5—C4—C8117.98 (13)C8—C4—H2121.007
F1—C5—C4118.76 (13)C5—C6—H3120.543
F1—C5—C6117.91 (12)C7—C6—H3120.538
C4—C5—C6123.32 (13)C6—C7—H4120.618
C5—C6—C7118.92 (13)C9—C7—H4120.626
C6—C7—C9118.76 (13)O3—C10—H5117.845
C3—C8—C4120.90 (12)C2—C10—H5117.850
C3—C8—C9120.11 (12)
C1—O1—C9—C7179.22 (10)C8—C4—C5—F1179.77 (11)
C1—O1—C9—C80.80 (17)C8—C4—C5—C60.1 (2)
C9—O1—C1—C21.26 (19)H2—C4—C5—F10.2
C9—O1—C1—H1178.7H2—C4—C5—C6179.9
O1—C1—C2—C30.9 (2)H2—C4—C8—C30.3
O1—C1—C2—C10179.01 (11)H2—C4—C8—C9179.9
H1—C1—C2—C3179.1F1—C5—C6—C7179.98 (11)
H1—C1—C2—C101.0F1—C5—C6—H30.0
C1—C2—C3—O2179.92 (12)C4—C5—C6—C70.1 (2)
C1—C2—C3—C80.01 (18)C4—C5—C6—H3179.9
C1—C2—C10—O32.2 (2)C5—C6—C7—C90.4 (2)
C1—C2—C10—H5177.8C5—C6—C7—H4179.6
C3—C2—C10—O3177.66 (12)H3—C6—C7—C9179.6
C3—C2—C10—H52.3H3—C6—C7—H40.4
C10—C2—C3—O20.21 (19)C6—C7—C9—O1179.57 (11)
C10—C2—C3—C8179.87 (11)C6—C7—C9—C80.5 (2)
O2—C3—C8—C40.5 (2)H4—C7—C9—O10.4
O2—C3—C8—C9179.68 (12)H4—C7—C9—C8179.6
C2—C3—C8—C4179.39 (11)C3—C8—C9—O10.01 (19)
C2—C3—C8—C90.40 (17)C3—C8—C9—C7179.97 (11)
C5—C4—C8—C3179.74 (11)C4—C8—C9—O1179.78 (11)
C5—C4—C8—C90.05 (19)C4—C8—C9—C70.24 (19)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y1, z+1; (iv) x, y, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) x1/2, y1/2, z1/2; (x) x+1/2, y1/2, z+1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z1/2; (xiii) x+1/2, y+1/2, z+1/2; (xiv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3xi0.952.373.308 (2)171
C4—H2···O2iii0.952.353.235 (2)154
C6—H3···O3xiii0.952.483.198 (2)133
Symmetry codes: (iii) x, y1, z+1; (xi) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O3i0.952.373.308 (2)171
C4—H2···O2ii0.952.353.235 (2)154
C6—H3···O3iii0.952.483.198 (2)133
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y1, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges the University of Shizuoka for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o555.  CSD CrossRef IUCr Journals
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds