metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-3,5-diiso­propyl-4H-1,2,4-triazolato-κ3N:N′:N′′)silver(I)]

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: xxyang@scut.edu.cn

(Received 29 September 2013; accepted 10 April 2014; online 26 April 2014)

In the polymeric title compound, [Ag(C8H14N3)]n, the AgI cation is coordinated by three N atoms from three 3,5-diisopropyl-1,2,4-triazolate anions in a T-shaped geometry. The AgI cation deviates from the coordination plane by 0.014 (1) Å and the N—Ag—N bond angles are 96.85 (11), 97.72 (10) and 165.39 (12)°. The triazolate anion bridges three AgI cations, forming a three-dimensional polymeric network.

Related literature

For the synthesis, see: Yang et al. (2009[Yang, G., Zhang, P.-P., Liu, L.-L., Kou, J.-F., Hou, H.-W. & Fan, Y.-T. (2009). CrystEngComm, 11, 663-670.]). For related structures, see: Yang et al. (2007[Yang, G., Wang, Y. L., Li, J. P., Zhu, Y., Wang, S. M., Hou, H. W., Fan, Y. T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. 5, 714-719.]); Ling et al. (2012[Ling, Y., Zhai, F.-P., Deng, M.-L., Wu, D., Chen, Z.-X., Liu, X.-F., Zhou, Y.-M. & Weng, L.-H. (2012). CrystEngComm, 14, 1425-1431.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C8H14N3)]

  • Mr = 260.09

  • Orthorhombic, F d d 2

  • a = 20.853 (7) Å

  • b = 14.099 (5) Å

  • c = 14.364 (5) Å

  • V = 4223 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.836

  • 6151 measured reflections

  • 1646 independent reflections

  • 1626 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.045

  • S = 1.08

  • 1646 reflections

  • 113 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 645 Friedel pairs

  • Absolute structure parameter: −0.02 (4)

Table 1
Selected bond lengths (Å)

Ag1—N1 2.135 (2)
Ag1—N2i 2.131 (3)
Ag1—N3ii 2.504 (3)
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [-x+{\script{1\over 4}}, y-{\script{1\over 4}}, z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit of (I) contains one Ag(I) cation and one 3,5-diisopropyl-1,2,4-triazolate (diptrz) ligand. The coordination environment of the Ag (I) cation can be viewed as a "T" geometry, surrounded by three N atoms from three diptrz ligands (Fig. 1). The Ag1—N1 and Ag1—N2i bond distances are 2.135 (3) and 2.131 (3) Å, respectively, agreement with those of Ag—N bond distances in reported 1,2,4-triazole-based silver compounds (Ling et al., 2012). The Ag1—N3ii bond distance is 2.504 (4) Å, agreeing well with those observed in 4-amino-3,5-diisopropyl-1,2,4-triazolate-based (4-NH2-3,5-iPr2-tz) silver compounds (Yang et al., 2007). The diptrz ligand bridges neighboring three Ag(I) ions in a µ3-N1,N2,N4 fashion. The distance between Ag1iii and Ag1iv (bridged by diptrz in µ1,2-mode) is 3.3186 (11) Å, which is less than the sum of the van der Waals radii for the Ag atoms (3.44 Å). The infinite connection of Ag—N results the formation of three-dimensional compound (I) (Fig. 2).

Related literature top

For the synthesis, see: Yang et al. (2009). For related structures, see: Yang et al. (2007); Ling et al. (2012).

Experimental top

3,5-Diisopropyl-1H-1,2,4-triazole (Hdiptrz) was prepared according to the previous report (Yang et al., 2009). Hdiptrz (0.046 g, 0.3 mmol) was dissolved in the mixture solution of acetonitrile (5 ml) and distilled water (5 ml). Then, silver acetate (0.075 g, 0.45 mmol) was added to the mixture. The mixture was stirred at room temperature for 10 min, and the white emulsion was obtained. The mixture was then transferred into a 15 ml Teflon-lined Parr bomb and heated at 413 K for 3 days. Then the reaction was cooled down to room temperature and block colourless crystals of (I) were obtained in 36% yield (based on Hdiptrz) by filtration.

Refinement top

All H atoms were generated geometrically and allowed to ride on their parent atoms in riding-model approximations, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for methyl H atoms, and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the AgI cation in (I), showing the atom-labelling number. Displacement ellipsoids are drawn at the 30% probability level (Hydrogen atoms are omitted for clarity). [Symmetry codes: (i) 1.25 - x, -0.25 + y, -0.25 + z; (ii) -0.25 + x, 0.25 - y, -0.25 + z; (iii) 1.25 - x, 0.25 + y, 0.25 + z; (iv) 0.25 + x, 0.25 - y, 0.25 + z.]
[Figure 2] Fig. 2. A view of the structure of (I), showing the three-dimensional network viewed along the a axis (the isopropyl groups are omitted for clarity).
Poly[(µ3-3,5-diisopropyl-4H-1,2,4-triazolato-κ3N:N':N'')silver(I)] top
Crystal data top
[Ag(C8H14N3)]Dx = 1.636 Mg m3
Mr = 260.09Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 6779 reflections
a = 20.853 (7) Åθ = 2.9–30.8°
b = 14.099 (5) ŵ = 1.86 mm1
c = 14.364 (5) ÅT = 296 K
V = 4223 (2) Å3Block, colorless
Z = 160.20 × 0.15 × 0.10 mm
F(000) = 2080
Data collection top
Bruker APEXII CCD
diffractometer
1646 independent reflections
Radiation source: fine-focus sealed tube1626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2224
Tmin = 0.707, Tmax = 0.836k = 1616
6151 measured reflectionsl = 1517
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0255P)2 + 5.9277P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1646 reflectionsΔρmax = 0.35 e Å3
113 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 645 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
[Ag(C8H14N3)]V = 4223 (2) Å3
Mr = 260.09Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 20.853 (7) ŵ = 1.86 mm1
b = 14.099 (5) ÅT = 296 K
c = 14.364 (5) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1646 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1626 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.836Rint = 0.018
6151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.045Δρmax = 0.35 e Å3
S = 1.08Δρmin = 0.25 e Å3
1646 reflectionsAbsolute structure: Flack (1983), 645 Friedel pairs
113 parametersAbsolute structure parameter: 0.02 (4)
1 restraint
Special details top

Experimental. Analysis calculated (found) for Ag(C8N3H14) (%): C, 36.94 (36.82); H, 5.43 (5.71); N, 16.16 (16.23)%. IR spectrum for (I) (KBr,, cm-1): 2962(s), 2925(s), 2871(m), 1498(s), 1466(s), 1435(m), 1380(m), 1361(m), 1301 (m), 1271(m), 1168(m), 1111(w), 1089(m), 1042(m), 774(w).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.017808 (10)0.114711 (15)0.64610 (4)0.04068 (9)
N10.09085 (12)0.1578 (2)0.7413 (2)0.0404 (6)
N20.18000 (12)0.1560 (2)0.8229 (2)0.0422 (6)
N30.16637 (12)0.25041 (19)0.8030 (2)0.0455 (7)
C10.13441 (15)0.1034 (2)0.7855 (3)0.0409 (8)
C20.12967 (17)0.0027 (3)0.7926 (3)0.0569 (11)
H20.09710.02310.74770.068*
C30.1906 (3)0.0505 (3)0.7667 (5)0.0918 (18)
H3A0.22470.02700.80520.138*
H3B0.20020.03760.70260.138*
H3C0.18620.11760.77550.138*
C40.1069 (4)0.0329 (4)0.8876 (7)0.141 (3)
H4A0.10460.10090.89020.211*
H4B0.06520.00660.89920.211*
H4C0.13640.01060.93400.211*
C50.11257 (13)0.2480 (2)0.7535 (2)0.0394 (7)
C60.07883 (18)0.3347 (3)0.7186 (3)0.0560 (9)
H60.05900.31880.65870.067*
C70.0254 (3)0.3612 (5)0.7860 (7)0.120 (3)
H7A0.00160.30530.80240.180*
H7B0.00280.40630.75700.180*
H7C0.04360.38860.84120.180*
C80.1231 (3)0.4168 (4)0.7028 (6)0.120 (3)
H8A0.14290.43440.76060.180*
H8B0.09920.46960.67880.180*
H8C0.15570.39900.65880.180*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03118 (11)0.04062 (12)0.05024 (14)0.00108 (8)0.01624 (8)0.00135 (12)
N10.0305 (12)0.0401 (14)0.0505 (16)0.0034 (11)0.0191 (12)0.0062 (13)
N20.0315 (12)0.0409 (15)0.0542 (17)0.0038 (11)0.0152 (11)0.0026 (13)
N30.0370 (13)0.0367 (14)0.0629 (19)0.0008 (11)0.0149 (13)0.0033 (13)
C10.0341 (16)0.0395 (16)0.049 (2)0.0037 (13)0.0117 (14)0.0069 (15)
C20.0544 (19)0.0364 (19)0.080 (3)0.0010 (18)0.024 (2)0.003 (2)
C30.092 (3)0.054 (3)0.129 (5)0.021 (2)0.020 (3)0.029 (3)
C40.200 (7)0.059 (3)0.164 (7)0.006 (4)0.085 (7)0.027 (5)
C50.0344 (16)0.0379 (17)0.0458 (19)0.0037 (15)0.0113 (12)0.0059 (16)
C60.051 (2)0.047 (2)0.070 (3)0.0063 (17)0.0288 (18)0.0000 (19)
C70.104 (5)0.092 (4)0.164 (8)0.060 (4)0.018 (5)0.017 (5)
C80.096 (4)0.077 (4)0.188 (8)0.004 (3)0.019 (4)0.064 (5)
Geometric parameters (Å, º) top
Ag1—N12.135 (2)C3—H3B0.9600
Ag1—N2i2.131 (3)C3—H3C0.9600
Ag1—N3ii2.504 (3)C4—H4A0.9600
Ag1—Ag1iii3.3187 (11)C4—H4B0.9600
N1—C11.349 (4)C4—H4C0.9600
N1—C51.361 (4)C5—C61.497 (5)
N2—C11.320 (4)C6—C81.498 (7)
N2—N31.391 (4)C6—C71.523 (9)
N2—Ag1iv2.131 (3)C6—H60.9800
N3—C51.329 (4)C7—H7A0.9600
N3—Ag1v2.504 (3)C7—H7B0.9600
C1—C21.502 (5)C7—H7C0.9600
C2—C31.485 (6)C8—H8A0.9600
C2—C41.507 (9)C8—H8B0.9600
C2—H20.9800C8—H8C0.9600
C3—H3A0.9600
N2i—Ag1—N1165.39 (12)H3B—C3—H3C109.5
N2i—Ag1—N3ii96.85 (11)C2—C4—H4A109.5
N1—Ag1—N3ii97.72 (10)C2—C4—H4B109.5
N2i—Ag1—Ag1iii70.99 (8)H4A—C4—H4B109.5
N1—Ag1—Ag1iii115.93 (8)C2—C4—H4C109.5
N3ii—Ag1—Ag1iii59.70 (6)H4A—C4—H4C109.5
C1—N1—C5104.3 (2)H4B—C4—H4C109.5
C1—N1—Ag1128.3 (2)N3—C5—N1111.9 (3)
C5—N1—Ag1125.9 (2)N3—C5—C6123.8 (3)
C1—N2—N3107.9 (2)N1—C5—C6124.3 (3)
C1—N2—Ag1iv138.0 (2)C5—C6—C8113.0 (4)
N3—N2—Ag1iv114.09 (19)C5—C6—C7109.3 (4)
C5—N3—N2105.0 (3)C8—C6—C7111.0 (5)
C5—N3—Ag1v139.9 (2)C5—C6—H6107.8
N2—N3—Ag1v113.20 (19)C8—C6—H6107.8
N2—C1—N1110.9 (3)C7—C6—H6107.8
N2—C1—C2125.4 (3)C6—C7—H7A109.5
N1—C1—C2123.7 (3)C6—C7—H7B109.5
C3—C2—C1112.2 (3)H7A—C7—H7B109.5
C3—C2—C4111.6 (5)C6—C7—H7C109.5
C1—C2—C4111.3 (4)H7A—C7—H7C109.5
C3—C2—H2107.1H7B—C7—H7C109.5
C1—C2—H2107.1C6—C8—H8A109.5
C4—C2—H2107.1C6—C8—H8B109.5
C2—C3—H3A109.5H8A—C8—H8B109.5
C2—C3—H3B109.5C6—C8—H8C109.5
H3A—C3—H3B109.5H8A—C8—H8C109.5
C2—C3—H3C109.5H8B—C8—H8C109.5
H3A—C3—H3C109.5
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x+1/4, y1/4, z1/4; (iii) x, y, z; (iv) x+1/4, y+1/4, z+1/4; (v) x+1/4, y+1/4, z+1/4.
Selected bond lengths (Å) top
Ag1—N12.135 (2)Ag1—N3ii2.504 (3)
Ag1—N2i2.131 (3)
Symmetry codes: (i) x1/4, y+1/4, z1/4; (ii) x+1/4, y1/4, z1/4.
 

Acknowledgements

This work was supported by the National Program of Key Basic Research Project of China (973Program) (grant No. 2010CB227103) and the Key Projects in the National Science & Technology Pillar Program of China (grant No. 2006BABB04B03).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationLing, Y., Zhai, F.-P., Deng, M.-L., Wu, D., Chen, Z.-X., Liu, X.-F., Zhou, Y.-M. & Weng, L.-H. (2012). CrystEngComm, 14, 1425–1431.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationYang, G., Wang, Y. L., Li, J. P., Zhu, Y., Wang, S. M., Hou, H. W., Fan, Y. T. & Ng, S. W. (2007). Eur. J. Inorg. Chem. 5, 714–719.  Web of Science CSD CrossRef
First citationYang, G., Zhang, P.-P., Liu, L.-L., Kou, J.-F., Hou, H.-W. & Fan, Y.-T. (2009). CrystEngComm, 11, 663–670.  Web of Science CSD CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds