organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-4,12,15,18,26-Penta­hy­droxy-13,17-dioxahepta­cyclo­[14.10.0.03,14.04,12.06,11.018,26.019,24]hexa­cosa-1,3(14),6(11),7,9,15,19,21,23-nona­ene-5,25-dione methanol disolvate

aThe Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
*Correspondence e-mail: almog@mail.huji.ac.il

(Received 11 March 2014; accepted 25 March 2014; online 2 April 2014)

The title compound, C24H14O9·2CH3OH, displays a chair-shaped form. The two di­hydro­indenone ring systems are located above and below the central fused-ring system, the dihedral angles between the mean planes of di­hydro­indenone ring systems and the mean plane of central fused-ring system are 67.91 (5) and 73.52 (4)°, respectively. In the crystal, extensive O—H⋯O hydrogen bonds, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture.

Related literature

For an isomer of the title compound possessing a cup-shaped form, see: Mahmood et al. (2011[Mahmood, K., Yaqub, M., Tahir, M. N., Shafiq, Z. & Qureshi, A. M. (2011). Acta Cryst. E67, o910-o911.]). For a related structure, see: Almog et al. (2009[Almog, J., Rozin, R., Klein, A., Shamoilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954-7962.]).

[Scheme 1]

Experimental

Crystal data
  • C24H14O9·2CH4O

  • Mr = 510.44

  • Triclinic, [P \overline 1]

  • a = 8.8243 (13) Å

  • b = 10.3974 (16) Å

  • c = 14.348 (2) Å

  • α = 72.936 (3)°

  • β = 74.639 (2)°

  • γ = 75.792 (3)°

  • V = 1193.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.20 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 13982 measured reflections

  • 5549 independent reflections

  • 3395 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.153

  • S = 1.01

  • 5549 reflections

  • 345 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O8i 0.82 1.92 2.702 (2) 160
O3—H3O⋯O5ii 0.82 1.91 2.725 (2) 171
O5—H5O⋯O10 0.82 1.80 2.610 (3) 171
O7—H7O⋯O1iii 0.82 2.14 2.916 (2) 158
O9—H9O⋯O4iv 0.82 1.95 2.751 (2) 166
O10—H10O⋯O11iv 0.82 (1) 1.85 (2) 2.650 (4) 163 (5)
O11—H11O⋯O7 0.83 (1) 2.31 (3) 3.010 (3) 142 (4)
O11—H11O⋯O9 0.83 (1) 2.15 (3) 2.873 (3) 145 (4)
C18—H18⋯O6iii 0.93 2.56 3.370 (3) 146
C21—H21⋯O1v 0.93 2.57 3.231 (3) 129
C11—H11⋯Cgvi 0.93 2.63 3.501 (3) 156
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

Kim's synthesis of a novel cavitand by a one pot reaction between phloroglucinol and ninhydrin has been extended creating a new class of bowl-shaped compounds, which we have named Vasarenes (Almog et al., 2009). An isomeric form of the vasarene above, possessing a cup-shaped form has been reported in the past (Mahmood et al., 2011). Under our synthetic conditions only a chair-shaped form could be obtained. Quantum chemical DFT calculations show a small energy difference (less than 0.5 kcal/mol) between these two isomers.

Results and discussion top

The content of the unit cell is actually the basic feature which extended itself in 3D space. It includes the two RRRR/SSSS enanti­omers of I, and four methanol molecules. These two enanti­omers link each other by two O(9)—H···O(4) hydrogen bonds , forming a 18-member ring centered at (0.5, 0.5, 0.5). Two methanol molecules bind each other through O(10)—H···O(11) and stabilize the dimer by two extra hydrogen bonds : O(5)—H···O(10) and O(11)—H···O(9). The same applies at the opposite side of the dimer with the other two methanol molecules. A pair of O(3)—H···O(5) hydrogen bonds, centered at (0.5, 1.0, 0.5), extend the structure in the y-direction, while a pair of O(7)—H···O(1) hydrogen bonds centered at (0.5, 0.5, 1.0) extend - in the z-direction. And finally these yz layers link themselves in the x-direction by O(1)—H···O(8) hydrogen bonds, thus completing the 3D structure. Fig. 2 describes it well.

Synthesis and crystallization top

A mixture of ninhydrin (2.00 g, 11.23 mmol) and pyrogallol (0.70 g, 5.5 mmol) in acetic acid (40 ml), was stirred at 80°C for 24h. During the reaction the mixture turned brown, and a white solid precipitated. After cooling to room temperature, the solid was filtered and washed with cold acetic acid and ether. Crystallization from methanol produced colorless crystals suitable for single crystal X-ray crystallography. Yield: 1.27g, 51%, m.p. 218°C.

Refinement top

Hydroxyl H atoms of methanol molecules were located in a different Fourier map and refined in riding mode with distance constraint of O—H = 0.82 (1) Å, Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with O—H = 0.82, C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C,O) for the methyl h and other hydroxyl H atoms.

Related literature top

For an isomer of the title compound possessing a cup-shaped form, see: Mahmood et al. (2011). For a related structure, see: Almog et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) dimethanolate with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. For the sake of clarity only hydroxyl H atoms are shown.
[Figure 2] Fig. 2. A view down nearly a axis showing the H-bonding framework of the structure.
[Figure 3] Fig. 3. Enhanced figure.
(±)-4,12,15,18,26-Pentahydroxy-13,17-dioxaheptacyclo[14.10.0.03,14.04,12.06,11.018,26.019,24]hexacosa-1,3(14),6(11),7,9,15,19,21,23-nonaene-5,25-dione methanol disolvate top
Crystal data top
C24H14O9·2CH4OZ = 2
Mr = 510.44F(000) = 532
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8243 (13) ÅCell parameters from 3395 reflections
b = 10.3974 (16) Åθ = 2.1–28.0°
c = 14.348 (2) ŵ = 0.11 mm1
α = 72.936 (3)°T = 295 K
β = 74.639 (2)°Block, colorless
γ = 75.792 (3)°0.20 × 0.13 × 0.08 mm
V = 1193.3 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3395 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
Detector resolution: 8.36 pixels mm-1h = 1111
phi and ω scansk = 1313
13982 measured reflectionsl = 1818
5549 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0681P)2]
where P = (Fo2 + 2Fc2)/3
5549 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H14O9·2CH4Oγ = 75.792 (3)°
Mr = 510.44V = 1193.3 (3) Å3
Triclinic, P1Z = 2
a = 8.8243 (13) ÅMo Kα radiation
b = 10.3974 (16) ŵ = 0.11 mm1
c = 14.348 (2) ÅT = 295 K
α = 72.936 (3)°0.20 × 0.13 × 0.08 mm
β = 74.639 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3395 reflections with I > 2σ(I)
13982 measured reflectionsRint = 0.050
5549 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0672 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
5549 reflectionsΔρmin = 0.33 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6380 (3)0.6944 (2)0.75601 (17)0.0271 (5)
C20.6617 (3)0.7483 (2)0.65384 (17)0.0251 (5)
C30.5721 (3)0.7275 (2)0.59507 (16)0.0242 (5)
C40.4448 (3)0.6583 (2)0.63721 (16)0.0253 (5)
H40.38220.64650.59850.030*
C50.4155 (2)0.6076 (2)0.74000 (16)0.0237 (5)
C60.5131 (3)0.6235 (2)0.79557 (16)0.0259 (5)
C70.7762 (3)0.8563 (2)0.49645 (17)0.0271 (5)
C80.9267 (3)0.7759 (3)0.44871 (18)0.0313 (6)
C91.0816 (3)0.7894 (3)0.4420 (2)0.0453 (7)
H91.10210.85430.46760.054*
C101.2044 (3)0.7035 (3)0.3962 (2)0.0520 (8)
H101.30960.71020.39120.062*
C111.1739 (3)0.6066 (3)0.3571 (2)0.0492 (8)
H111.25890.55110.32530.059*
C121.0206 (3)0.5921 (3)0.3650 (2)0.0420 (7)
H121.00030.52640.34010.050*
C130.8956 (3)0.6787 (2)0.41145 (18)0.0304 (6)
C140.7229 (3)0.6854 (2)0.42804 (16)0.0278 (5)
C150.6364 (3)0.7924 (2)0.48880 (16)0.0251 (5)
C160.3270 (3)0.5121 (3)0.91425 (17)0.0277 (5)
C170.1959 (3)0.6094 (3)0.96265 (17)0.0289 (6)
C180.1819 (3)0.6424 (3)1.05147 (19)0.0417 (7)
H180.25680.60031.09120.050*
C190.0530 (4)0.7400 (3)1.0794 (2)0.0501 (8)
H190.04010.76231.13960.060*
C200.0564 (3)0.8047 (3)1.0201 (2)0.0512 (8)
H320.14080.87121.04020.061*
C210.0430 (3)0.7726 (3)0.9319 (2)0.0425 (7)
H210.11710.81630.89180.051*
C220.0840 (3)0.6733 (3)0.90383 (18)0.0315 (6)
C230.1240 (3)0.6198 (3)0.81479 (17)0.0287 (6)
C240.2903 (3)0.5289 (2)0.80993 (16)0.0258 (5)
C250.7395 (5)1.0380 (4)0.2088 (3)0.0889 (13)
H25A0.74091.08800.25510.133*
H25B0.69771.09990.15340.133*
H25C0.84620.99380.18540.133*
C260.6111 (6)0.1071 (5)0.8833 (4)0.1277 (19)
H26A0.61810.12040.94530.192*
H26B0.66830.16800.82900.192*
H26C0.65680.01420.88030.192*
O10.72441 (18)0.7100 (2)0.81690 (12)0.0381 (5)
H1O0.81840.70670.78820.057*
O20.77457 (18)0.82605 (17)0.60350 (12)0.0322 (4)
O30.76792 (19)0.99359 (17)0.45672 (13)0.0354 (4)
H3O0.68071.03450.48020.053*
O40.6535 (2)0.62199 (19)0.39918 (13)0.0409 (5)
O50.51468 (19)0.88543 (17)0.44504 (12)0.0332 (4)
H5O0.54810.91080.38480.050*
O60.47605 (18)0.56300 (18)0.89531 (11)0.0317 (4)
O70.3494 (2)0.37741 (17)0.96603 (12)0.0387 (5)
H7O0.33690.37311.02550.058*
O80.0433 (2)0.6403 (2)0.75343 (13)0.0455 (5)
O90.2920 (2)0.40219 (17)0.79333 (12)0.0381 (5)
H9O0.31090.40880.73320.057*
O100.6448 (4)0.9415 (3)0.25526 (18)0.1024 (11)
H10O0.604 (5)0.909 (4)0.224 (3)0.123*
O110.4543 (4)0.1337 (3)0.8764 (2)0.0857 (8)
H11O0.420 (5)0.2163 (14)0.873 (3)0.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (12)0.0415 (15)0.0265 (13)0.0033 (10)0.0055 (10)0.0161 (11)
C20.0164 (11)0.0343 (14)0.0257 (13)0.0045 (10)0.0013 (9)0.0121 (11)
C30.0193 (11)0.0301 (13)0.0236 (12)0.0020 (10)0.0040 (9)0.0094 (10)
C40.0207 (12)0.0355 (14)0.0236 (12)0.0055 (10)0.0068 (10)0.0109 (10)
C50.0160 (11)0.0313 (13)0.0249 (12)0.0036 (10)0.0035 (9)0.0098 (10)
C60.0189 (12)0.0376 (14)0.0189 (12)0.0010 (10)0.0012 (9)0.0096 (10)
C70.0257 (13)0.0330 (14)0.0245 (13)0.0107 (10)0.0005 (10)0.0097 (11)
C80.0279 (13)0.0345 (14)0.0280 (13)0.0067 (11)0.0000 (10)0.0065 (11)
C90.0314 (15)0.0555 (19)0.0541 (18)0.0093 (13)0.0039 (13)0.0244 (15)
C100.0236 (14)0.067 (2)0.063 (2)0.0049 (14)0.0007 (14)0.0242 (17)
C110.0341 (16)0.0509 (19)0.0534 (19)0.0045 (14)0.0028 (14)0.0195 (15)
C120.0406 (17)0.0414 (16)0.0436 (16)0.0045 (13)0.0008 (13)0.0193 (13)
C130.0289 (14)0.0326 (14)0.0276 (13)0.0054 (11)0.0021 (10)0.0080 (11)
C140.0338 (14)0.0323 (14)0.0171 (12)0.0117 (11)0.0002 (10)0.0058 (10)
C150.0227 (12)0.0317 (13)0.0222 (12)0.0052 (10)0.0047 (10)0.0085 (10)
C160.0219 (12)0.0394 (15)0.0239 (12)0.0086 (10)0.0047 (10)0.0083 (11)
C170.0240 (13)0.0385 (14)0.0253 (13)0.0118 (11)0.0016 (10)0.0106 (11)
C180.0420 (16)0.0548 (18)0.0312 (15)0.0054 (14)0.0071 (12)0.0182 (13)
C190.0463 (18)0.071 (2)0.0414 (17)0.0076 (16)0.0050 (14)0.0331 (16)
C200.0318 (16)0.066 (2)0.061 (2)0.0022 (14)0.0057 (14)0.0372 (17)
C210.0236 (14)0.0600 (19)0.0489 (17)0.0031 (13)0.0084 (12)0.0240 (15)
C220.0191 (12)0.0465 (16)0.0329 (14)0.0104 (11)0.0008 (10)0.0160 (12)
C230.0168 (12)0.0465 (16)0.0245 (13)0.0134 (11)0.0022 (10)0.0069 (11)
C240.0243 (12)0.0344 (14)0.0209 (12)0.0078 (10)0.0024 (10)0.0100 (10)
C250.134 (4)0.069 (3)0.058 (2)0.043 (3)0.014 (2)0.017 (2)
C260.081 (4)0.129 (4)0.168 (5)0.004 (3)0.036 (4)0.031 (4)
O10.0209 (9)0.0731 (13)0.0273 (9)0.0157 (9)0.0045 (7)0.0174 (9)
O20.0262 (9)0.0483 (11)0.0274 (9)0.0165 (8)0.0019 (7)0.0124 (8)
O30.0291 (10)0.0322 (10)0.0437 (11)0.0098 (8)0.0002 (8)0.0107 (8)
O40.0412 (11)0.0536 (12)0.0368 (10)0.0186 (9)0.0001 (8)0.0237 (9)
O50.0283 (9)0.0418 (10)0.0269 (9)0.0046 (8)0.0067 (7)0.0053 (8)
O60.0216 (9)0.0537 (11)0.0208 (9)0.0113 (8)0.0050 (7)0.0064 (8)
O70.0511 (12)0.0408 (11)0.0235 (9)0.0113 (9)0.0083 (8)0.0041 (8)
O80.0255 (10)0.0782 (15)0.0389 (11)0.0064 (9)0.0104 (8)0.0225 (10)
O90.0518 (12)0.0409 (11)0.0273 (9)0.0193 (9)0.0059 (8)0.0099 (8)
O100.159 (3)0.127 (2)0.0380 (14)0.096 (2)0.0015 (16)0.0037 (15)
O110.083 (2)0.0627 (17)0.119 (2)0.0077 (15)0.0398 (17)0.0354 (17)
Geometric parameters (Å, º) top
C1—O11.367 (3)C16—C171.502 (3)
C1—C61.379 (3)C16—C241.566 (3)
C1—C21.386 (3)C17—C181.382 (3)
C2—O21.356 (3)C17—C221.386 (3)
C2—C31.388 (3)C18—C191.384 (4)
C3—C41.388 (3)C18—H180.9300
C3—C151.492 (3)C19—C201.375 (4)
C4—C51.389 (3)C19—H190.9300
C4—H40.9300C20—C211.371 (4)
C5—C61.384 (3)C20—H320.9300
C5—C241.507 (3)C21—C221.385 (3)
C6—O61.369 (3)C21—H210.9300
C7—O31.364 (3)C22—C231.466 (3)
C7—O21.472 (3)C23—O81.215 (3)
C7—C81.497 (3)C23—C241.534 (3)
C7—C151.579 (3)C24—O91.402 (3)
C8—C131.383 (3)C25—O101.369 (4)
C8—C91.384 (3)C25—H25A0.9600
C9—C101.377 (4)C25—H25B0.9600
C9—H90.9300C25—H25C0.9600
C10—C111.395 (4)C26—O111.367 (5)
C10—H100.9300C26—H26A0.9600
C11—C121.369 (4)C26—H26B0.9600
C11—H110.9300C26—H26C0.9600
C12—C131.395 (3)O1—H1O0.8200
C12—H120.9300O3—H3O0.8200
C13—C141.467 (3)O5—H5O0.8200
C14—O41.214 (3)O7—H7O0.8194
C14—C151.543 (3)O9—H9O0.8194
C15—O51.405 (3)O10—H10O0.820 (10)
C16—O71.373 (3)O11—H11O0.828 (10)
C16—O61.467 (3)
O1—C1—C6120.2 (2)C17—C16—C24105.47 (18)
O1—C1—C2125.2 (2)C18—C17—C22120.5 (2)
C6—C1—C2114.6 (2)C18—C17—C16128.1 (2)
O2—C2—C1122.4 (2)C22—C17—C16111.3 (2)
O2—C2—C3114.8 (2)C17—C18—C19118.0 (3)
C1—C2—C3122.9 (2)C17—C18—H18121.0
C4—C3—C2121.2 (2)C19—C18—H18121.0
C4—C3—C15130.4 (2)C20—C19—C18121.4 (3)
C2—C3—C15108.38 (19)C20—C19—H19119.3
C3—C4—C5116.7 (2)C18—C19—H19119.3
C3—C4—H4121.6C21—C20—C19120.9 (3)
C5—C4—H4121.6C21—C20—H32119.5
C6—C5—C4120.4 (2)C19—C20—H32119.5
C6—C5—C24108.21 (19)C20—C21—C22118.3 (3)
C4—C5—C24131.3 (2)C20—C21—H21120.9
O6—C6—C1121.4 (2)C22—C21—H21120.9
O6—C6—C5114.6 (2)C21—C22—C17121.0 (2)
C1—C6—C5124.0 (2)C21—C22—C23129.0 (2)
O3—C7—O2109.01 (18)C17—C22—C23110.0 (2)
O3—C7—C8111.65 (19)O8—C23—C22127.9 (2)
O2—C7—C8107.93 (19)O8—C23—C24123.6 (2)
O3—C7—C15116.6 (2)C22—C23—C24108.51 (19)
O2—C7—C15105.89 (17)O9—C24—C5115.82 (18)
C8—C7—C15105.35 (19)O9—C24—C23112.00 (18)
C13—C8—C9121.3 (2)C5—C24—C23110.43 (19)
C13—C8—C7111.8 (2)O9—C24—C16111.61 (19)
C9—C8—C7126.9 (2)C5—C24—C16102.36 (17)
C10—C9—C8117.9 (3)C23—C24—C16103.53 (17)
C10—C9—H9121.1O10—C25—H25A109.5
C8—C9—H9121.1O10—C25—H25B109.5
C9—C10—C11121.2 (3)H25A—C25—H25B109.5
C9—C10—H10119.4O10—C25—H25C109.5
C11—C10—H10119.4H25A—C25—H25C109.5
C12—C11—C10120.9 (3)H25B—C25—H25C109.5
C12—C11—H11119.6O11—C26—H26A109.5
C10—C11—H11119.6O11—C26—H26B109.5
C11—C12—C13118.2 (3)H26A—C26—H26B109.5
C11—C12—H12120.9O11—C26—H26C109.5
C13—C12—H12120.9H26A—C26—H26C109.5
C8—C13—C12120.6 (2)H26B—C26—H26C109.5
C8—C13—C14110.5 (2)C1—O1—H1O109.5
C12—C13—C14128.9 (2)C2—O2—C7108.05 (16)
O4—C14—C13128.1 (2)C7—O3—H3O109.5
O4—C14—C15123.4 (2)C15—O5—H5O109.5
C13—C14—C15108.41 (19)C6—O6—C16107.45 (16)
O5—C15—C3110.68 (19)C16—O7—H11O116.6 (9)
O5—C15—C14111.54 (18)C16—O7—H7O109.4
C3—C15—C14112.18 (19)H11O—O7—H7O134.0
O5—C15—C7115.65 (19)C24—O9—H11O120.8 (10)
C3—C15—C7102.74 (18)C24—O9—H9O109.2
C14—C15—C7103.64 (18)H11O—O9—H9O112.8
O7—C16—O6108.50 (18)C25—O10—H5O124.0
O7—C16—C17117.07 (19)C25—O10—H10O123 (3)
O6—C16—C17107.07 (19)H5O—O10—H10O111.0
O7—C16—C24111.54 (19)C26—O11—H11O108 (3)
O6—C16—C24106.64 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O8i0.821.922.702 (2)160
O3—H3O···O5ii0.821.912.725 (2)171
O5—H5O···O100.821.802.610 (3)171
O7—H7O···O1iii0.822.142.916 (2)158
O9—H9O···O4iv0.821.952.751 (2)166
O10—H10O···O11iv0.82 (1)1.85 (2)2.650 (4)163 (5)
O11—H11O···O70.83 (1)2.31 (3)3.010 (3)142 (4)
O11—H11O···O90.83 (1)2.15 (3)2.873 (3)145 (4)
C18—H18···O6iii0.932.563.370 (3)146
C21—H21···O1v0.932.573.231 (3)129
C11—H11···Cgvi0.932.633.501 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···O8i0.821.922.702 (2)160.4
O3—H3O···O5ii0.821.912.725 (2)171.0
O5—H5O···O100.821.802.610 (3)170.8
O7—H7O···O1iii0.822.142.916 (2)157.5
O9—H9O···O4iv0.821.952.751 (2)165.8
O10—H10O···O11iv0.820 (10)1.854 (16)2.650 (4)163 (5)
O11—H11O···O70.828 (10)2.31 (3)3.010 (3)142 (4)
O11—H11O···O90.828 (10)2.15 (3)2.873 (3)145 (4)
C18—H18···O6iii0.932.563.370 (3)146
C21—H21···O1v0.932.573.231 (3)129
C11—H11···Cgvi0.932.633.501 (3)156
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+2, y+1, z+1.
 

Acknowledgements

This project was supported financially by a joint grant from The Israel Atomic Energy Commission and The Israel Council of Higher Education.

References

First citationAlmog, J., Rozin, R., Klein, A., Shamoilov-Levinton, G. & Cohen, S. (2009). Tetrahedron, 65, 7954–7962.  Web of Science CSD CrossRef CAS
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationMahmood, K., Yaqub, M., Tahir, M. N., Shafiq, Z. & Qureshi, A. M. (2011). Acta Cryst. E67, o910–o911.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds