organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Thio­ureido-1H-benzimidazol-3-ium chloride monohydrate

aDepartment of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bangalore 560 067, India, and bX-ray Crystallography Division, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: cnsundaresan@sssihl.edu.in

(Received 20 March 2014; accepted 27 March 2014; online 16 April 2014)

In the title compound, C8H9N4S+·Cl·H2O, the cation is approximately planar, with a dihedral angle of 7.71 (8)° between the mean planes of the benzo­imidazole ring system and the thio­urea unit. In the crystal, cations, anions and water molecules of crystallization are linked by O—H⋯Cl, N—H⋯O, N—H⋯Cl and N—H⋯S hydrogen bonds into a three-dimensional network. ππ stacking is observed between the benzene and imidazole rings of neighbouring mol­ecules, the centroid–centroid distance being 3.5774 (11) Å.

Related literature

For the synthesis and biological activity of benzimidazoles, see: Siva & Subhash (2011[Siva, S. P. & Subhash, C. J. (2011). Synth. Commun. 41, 729-735.]); Sharghi et al. (2008[Sharghi, H., Asemani, O. & Khalifeh, R. (2008). Synth. Commun. 38, 1128-1136.]); Refaat (2010[Refaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949-2956.]); Puratchikody et al. (2008[Puratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull. 56, 273-281.]); Achar et al. (2010[Achar, K. C., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048-2054.]); Starcevic et al. (2007[Starcevic, K., Kralj, M., Ester, K., Sabol, I., Grce, M., Pavelic, K. & Karminski-Zamola, G. (2007). Bioorg. Med. Chem. 15, 4419-4426.]). For hydrogen-bond classification, see: Jeffrey et al. (1985[Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-348.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9N4S+·Cl+·H2O

  • Mr = 246.72

  • Monoclinic, P 21 /c

  • a = 9.3027 (6) Å

  • b = 8.7038 (5) Å

  • c = 14.5503 (8) Å

  • β = 109.143 (3)°

  • V = 1112.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 K

  • 0.33 × 0.19 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.850, Tmax = 0.932

  • 10318 measured reflections

  • 1958 independent reflections

  • 1818 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.07

  • 1958 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl1i 0.81 2.29 3.0991 (15) 179
O1—H2O⋯Cl1 0.87 2.30 3.1443 (14) 165
N1—H1N⋯O1 0.86 2.32 3.064 (2) 145
N1—H2N⋯O1ii 0.86 2.14 3.000 (2) 174
N2—H2⋯O1 0.86 2.03 2.8667 (19) 165
N3—H3N⋯S1 0.80 2.43 3.0146 (14) 131
N4—H4N⋯Cl1 0.83 2.28 3.1055 (15) 175
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, Benzimidazole moiety has gained increased interest in drug industry worldwide, as an important pharmocophore exhibiting a wide spectrum of biological and pharmaceutical activities. They act as anti-HIV agents, anti cancer agents (Refaat, 2010), anti-tumor agents (Starcevic et al., 2007), anti-microbial agents (Puratchikody et al., 2008) analgesic and anti-inflammatory agents (Achar et al., 2010).

The title compound (Fig. 1), C8H11ClN4OS, crystallized in monoclinic P21/c space group with Z=4 (Fig. 2). Two chloride anions and two water molecules are acting as a bridge to connect four molecules of the title compound which resulted in infinite layered type supramolecular architecture. The title compound is mainly stabilized by N—H···O, N—H···Cl, O—H···Cl intermolecular hydrogen bonding which resulted in generating of ring motifs R22 (8) and R12 (6). The intramolecular ring motif S11 (6) is also generated due to intramolecular N—H···S hydrogen bonding.

Related literature top

For the synthesis and biological activity of benzimidazoles, see: Siva & Subhash (2011); Sharghi et al. (2008); Refaat (2010); Puratchikody et al. (2008); Achar et al. (2010); Starcevic et al. (2007). For hydrogen-bond classification, see: Jeffrey et al. (1985).

Experimental top

A mixture of 5-amino-3H-1, 2, 4-dithiazole-3-thione (1.5 g, 0.01 mol) and o-phenylenediamine (1.08 g, 0.01 mol) in absolute ethanol (25 ml) was refluxed for 24 h. The solvent was removed under reduced pressure and the residue was treated with aqueous sodium hydroxide (1 N, 3 × 20 ml) and then filtered after an hour. The filtrate was adjusted to pH 5 by addition of aqueous hydrochloric acid (1 N) and left in a refrigerator overnight. The precipitate (1.8 g, 74%) was collected, washed with water and dried. The title compound was recrystallized from formic acid-propanol mixture to yield small crystals. The melting point was recorded as 248–251°C.

Refinement top

The structure refinements were performed by full-matrix least-squares on F2. The H positions bound to C atoms were calculated after each cycle of refinement using a riding model C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bound to N and O atoms were located in a difference Fourier map and refined in riding mode, Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of 1-(1H-benzo[d]imidazol-2-yl)thiourea salt hydrate (Thermal ellipsoids are drawn at 30% probability level).
[Figure 2] Fig. 2. Crystal packing diagram of the title compound (I).
[Figure 3] Fig. 3. Synthetic scheme of the title compound (I).
2-Thioureido-1H-benzimidazol-3-ium chloride monohydrate top
Crystal data top
C8H9N4S+·Cl+·H2OF(000) = 512
Mr = 246.72Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 5220 reflections
a = 9.3027 (6) Åθ = 2.3–27.9°
b = 8.7038 (5) ŵ = 0.51 mm1
c = 14.5503 (8) ÅT = 293 K
β = 109.143 (3)°Block, yellow
V = 1112.97 (11) Å30.33 × 0.19 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1958 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.850, Tmax = 0.932k = 1010
10318 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.041P)2 + 0.391P]
where P = (Fo2 + 2Fc2)/3
1958 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C8H9N4S+·Cl+·H2OV = 1112.97 (11) Å3
Mr = 246.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3027 (6) ŵ = 0.51 mm1
b = 8.7038 (5) ÅT = 293 K
c = 14.5503 (8) Å0.33 × 0.19 × 0.14 mm
β = 109.143 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1958 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1818 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.932Rint = 0.021
10318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
1958 reflectionsΔρmin = 0.20 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37873 (6)0.13735 (5)0.83964 (4)0.05278 (17)
N10.45104 (18)0.12730 (17)0.77931 (11)0.0483 (4)
H1N0.45450.22610.77850.058*
H2N0.48870.07710.74170.058*
N20.33167 (17)0.15159 (16)0.89088 (10)0.0415 (3)
H20.34900.24700.88300.050*
N30.25238 (15)0.02567 (16)0.99381 (10)0.0372 (3)
H3N0.27050.10200.96950.045*
N40.22253 (15)0.22080 (16)1.00973 (10)0.0394 (3)
H4N0.22670.31400.99870.047*
C10.38850 (19)0.0537 (2)0.83586 (12)0.0383 (4)
C20.27105 (19)0.11420 (19)0.96112 (12)0.0366 (4)
C30.19110 (17)0.00866 (19)1.06892 (11)0.0348 (4)
C40.1550 (2)0.1157 (2)1.12841 (13)0.0421 (4)
H40.16680.22071.12130.051*
C50.1006 (2)0.0573 (2)1.19897 (14)0.0475 (4)
H50.07800.12481.24180.057*
C60.0785 (2)0.1001 (2)1.20790 (14)0.0487 (4)
H60.03970.13431.25560.058*
C70.11296 (19)0.2059 (2)1.14772 (13)0.0445 (4)
H70.09720.31061.15310.053*
C80.17212 (18)0.14874 (18)1.07901 (12)0.0360 (4)
O10.44295 (16)0.44905 (15)0.86287 (10)0.0522 (3)
H1O0.52620.44400.90420.078*
H2O0.38410.49800.88810.078*
Cl10.23786 (6)0.57314 (5)0.98063 (4)0.05321 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0756 (4)0.0303 (3)0.0653 (3)0.0048 (2)0.0406 (3)0.0053 (2)
N10.0621 (10)0.0372 (8)0.0539 (9)0.0004 (7)0.0303 (8)0.0037 (7)
N20.0569 (9)0.0264 (7)0.0446 (8)0.0004 (6)0.0210 (7)0.0028 (6)
N30.0462 (8)0.0258 (7)0.0404 (7)0.0011 (6)0.0152 (6)0.0025 (6)
N40.0479 (8)0.0243 (7)0.0456 (8)0.0015 (6)0.0150 (6)0.0010 (6)
C10.0400 (9)0.0361 (9)0.0372 (8)0.0004 (7)0.0104 (7)0.0009 (7)
C20.0411 (9)0.0288 (8)0.0372 (8)0.0000 (7)0.0092 (7)0.0006 (7)
C30.0347 (8)0.0307 (8)0.0371 (8)0.0004 (6)0.0094 (7)0.0016 (7)
C40.0455 (9)0.0320 (9)0.0489 (10)0.0001 (7)0.0156 (8)0.0012 (7)
C50.0490 (10)0.0459 (10)0.0513 (11)0.0029 (8)0.0214 (9)0.0050 (8)
C60.0484 (10)0.0511 (11)0.0529 (11)0.0017 (8)0.0248 (9)0.0047 (9)
C70.0445 (10)0.0356 (9)0.0531 (10)0.0049 (7)0.0156 (8)0.0057 (8)
C80.0358 (8)0.0313 (9)0.0389 (9)0.0001 (6)0.0096 (7)0.0001 (7)
O10.0616 (8)0.0418 (7)0.0558 (8)0.0010 (6)0.0227 (6)0.0045 (6)
Cl10.0654 (3)0.0333 (3)0.0646 (3)0.0053 (2)0.0264 (2)0.0047 (2)
Geometric parameters (Å, º) top
S1—C11.6673 (18)C3—C41.386 (2)
N1—C11.319 (2)C3—C81.395 (2)
N1—H1N0.8607C4—C51.382 (3)
N1—H2N0.8592C4—H40.9300
N2—C21.359 (2)C5—C61.397 (3)
N2—C11.387 (2)C5—H50.9300
N2—H20.8606C6—C71.379 (3)
N3—C21.339 (2)C6—H60.9300
N3—C31.396 (2)C7—C81.382 (2)
N3—H3N0.7964C7—H70.9300
N4—C21.332 (2)O1—H1O0.8112
N4—C81.393 (2)O1—H2O0.8651
N4—H4N0.8304
C1—N1—H1N121.3C4—C3—N3131.46 (15)
C1—N1—H2N120.4C8—C3—N3106.54 (14)
H1N—N1—H2N118.4C5—C4—C3116.06 (16)
C2—N2—C1128.15 (14)C5—C4—H4122.0
C2—N2—H2118.3C3—C4—H4122.0
C1—N2—H2113.1C4—C5—C6122.05 (18)
C2—N3—C3108.39 (14)C4—C5—H5119.0
C2—N3—H3N122.0C6—C5—H5119.0
C3—N3—H3N129.5C7—C6—C5121.59 (17)
C2—N4—C8108.90 (13)C7—C6—H6119.2
C2—N4—H4N122.2C5—C6—H6119.2
C8—N4—H4N128.9C6—C7—C8116.69 (17)
N1—C1—N2113.04 (15)C6—C7—H7121.7
N1—C1—S1123.02 (14)C8—C7—H7121.7
N2—C1—S1123.94 (13)C7—C8—N4132.05 (15)
N4—C2—N3109.79 (15)C7—C8—C3121.58 (16)
N4—C2—N2121.94 (15)N4—C8—C3106.37 (14)
N3—C2—N2128.26 (15)H1O—O1—H2O107.1
C4—C3—C8121.98 (16)
C2—N2—C1—N1174.63 (16)C3—C4—C5—C62.0 (3)
C2—N2—C1—S15.7 (3)C4—C5—C6—C71.3 (3)
C8—N4—C2—N31.18 (19)C5—C6—C7—C80.8 (3)
C8—N4—C2—N2177.76 (15)C6—C7—C8—N4177.98 (17)
C3—N3—C2—N41.16 (18)C6—C7—C8—C32.1 (2)
C3—N3—C2—N2177.68 (16)C2—N4—C8—C7179.38 (17)
C1—N2—C2—N4178.93 (15)C2—N4—C8—C30.71 (18)
C1—N2—C2—N30.2 (3)C4—C3—C8—C71.5 (3)
C2—N3—C3—C4177.73 (17)N3—C3—C8—C7179.93 (15)
C2—N3—C3—C80.69 (18)C4—C3—C8—N4178.62 (15)
C8—C3—C4—C50.6 (2)N3—C3—C8—N40.01 (17)
N3—C3—C4—C5177.59 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl1i0.812.293.0991 (15)179
O1—H2O···Cl10.872.303.1443 (14)165
N1—H1N···O10.862.323.064 (2)145
N1—H2N···O1ii0.862.143.000 (2)174
N2—H2···O10.862.032.8667 (19)165
N3—H3N···S10.802.433.0146 (14)131
N4—H4N···Cl10.832.283.1055 (15)175
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl1i0.812.293.0991 (15)179.1
O1—H2O···Cl10.872.303.1443 (14)165.2
N1—H1N···O10.862.323.064 (2)145.2
N1—H2N···O1ii0.862.143.000 (2)173.6
N2—H2···O10.862.032.8667 (19)164.7
N3—H3N···S10.802.433.0146 (14)130.7
N4—H4N···Cl10.832.283.1055 (15)175.4
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the Director, IICT, Hyderabad, India, for the XRD data and Dr Anand Solomon for his guidance.

References

First citationAchar, K. C., Hosamani, K. M. & Seetharamareddy, H. R. (2010). Eur. J. Med. Chem. 45, 2048–2054.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–348.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuratchikody, A., Nagalakshmi, G. & Doble, M. (2008). Chem. Pharm. Bull. 56, 273–281.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRefaat, H. M. (2010). Eur. J. Med. Chem. 45, 2949–2956.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSharghi, H., Asemani, O. & Khalifeh, R. (2008). Synth. Commun. 38, 1128–1136.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiva, S. P. & Subhash, C. J. (2011). Synth. Commun. 41, 729–735.  Google Scholar
First citationStarcevic, K., Kralj, M., Ester, K., Sabol, I., Grce, M., Pavelic, K. & Karminski-Zamola, G. (2007). Bioorg. Med. Chem. 15, 4419–4426.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds