organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,10-Phenanthroline-5,6-dione ethanol monosolvate

aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp

(Received 30 March 2014; accepted 11 April 2014; online 18 April 2014)

In the title compound, C12H6N2O2·C2H5OH, the mol­ecule of the 1,10-phenanthroline-5,6-dione is approximately planar, with a maximum deviation of 0.051 (1) Å. In the crystal, mol­ecules are linked by O—H⋯N and weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along [110]. ππ stacking inter­actions are observed between the pyridine rings of neighbouring chains, the centroid–centroid separations being 3.6226 (11) and 3.7543 (11) Å.

Related literature

For background to and applications of 1,10-phenanthroline-5,6-dione, see: Smith & Cagle (1947[Smith, G. F. & Cagle, F. W. (1947). J. Org. Chem. 12, 781-784.]); Ma et al. (2010[Ma, Q., Zhu, M. L., Yuan, C. X., Feng, S. S., Lu, L. P. & Wang, Q. M. (2010). Cryst. Growth Des. 10, 1706-1714.]); Goss & Abruna (1985[Goss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263-4267.]); Murphy et al. (2011[Murphy, D. M., McNamara, K., Richardson, P., Sanchez-Romaguera, V., Winpenny, R. E. P. & Yellowlees, L. J. (2011). Inorg. Chim. Acta, 374, 435-441.]); Wu et al. (1996[Wu, Q., Maskus, M., Pariente, F., Tobalina, F., Fernandez, V. M., Lorenzo, E. & Abruna, H. D. (1996). Anal. Chem. 68, 3688-3696.]); Pinczewska et al. (2012[Pinczewska, A., Sosna, M., Bloodworth, S., Kilburn, J. D. & Bartlett, P. N. (2012). J. Am. Chem. Soc. 134, 18022-18033.]); Poteet & MacDonnell (2013[Poteet, S. A. & MacDonnell, F. M. (2013). Dalton Trans. 42, 13305-13307.]); Wu et al. (2002[Wu, J. Z., Li, H., Zhang, J. G. & Xu, J. H. (2002). Inorg. Chem. Commun. 5, 71-75.]); Poteet et al. 2013[Poteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S., Armstrong, D. W., Wolf, M. O. & MacDonnell, F. M. (2013). J. Am. Chem. Soc. 135, 2419-2422.]); Paw et al. (1998[Paw, W., Connick, W. B. & Eisenberg, R. (1998). Inorg. Chem. 37, 3919-3926.]). For the synthesis, see: Paw & Eisenberg (1997[Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287-2293.]). For a related structure, see: Calderazzo et al. (1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389-4396.]).

[Scheme 1]

Experimental

Crystal data
  • C12H6N2O2·C2H6O

  • Mr = 256.26

  • Triclinic, [P \overline 1]

  • a = 7.3064 (15) Å

  • b = 9.1055 (18) Å

  • c = 9.7291 (19) Å

  • α = 96.47 (3)°

  • β = 101.68 (3)°

  • γ = 109.83 (3)°

  • V = 584.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • 5059 measured reflections

  • 2252 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.06

  • 2252 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1i 0.85 (1) 2.08 (1) 2.8258 (19) 146 (2)
C1—H1⋯O2ii 0.95 2.53 3.3381 (19) 143
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y+1, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

The title compound was prepared according to literature method (Paw & Eisenberg, 1997). An ice-cold mixture of concentrated H2SO4 (40 mL) and HNO3 (20 mL) was added to 4 g of 1,10-phenanthroline (0.02 mol) and 4 g of KBr (0.03 mol). The mixture was heated at 90 oC for 3 h. The hot yellow solution was poured over 200 mL of ice and neutralized carefully with sodium hydroxide until neutral to slightly acidic pH. Extraction with CH2Cl2 (4*100 mL) followed by drying with Na2SO4 and removal of solvent gave 2.8 g (yield = 67%) of 1,10-phenanthroline-5,6-dione. This product was purified further by crystallization from ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Carbon-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hy­droxy H atom was located in a difference Fourier map, and was refined with distance restraints of O—H = 0.84±0.01, Uiso(H) = 1.2Ueq(O).

Results and discussion top

1,10-Phenanthroline-5,6-dione has been known for many years (Smith & Cagle, 1947), and its chelating ability as either a di­imine or a catecholate was important in coordination chemistry (Ma et al., 2010, Goss & Abruna, 1985, Murphy et al., 2011), analytical chemistry (Wu et al., 1996, Pinczewska et al., 2012) and biophysical chemistry (Poteet & MacDonnell, 2013, Wu et al., 2002, Poteet et al., 2013). Moreover, it can become as the bridging ligand, which has shown very inter­esting function in multinuclear complexes (Paw et al., 1998, Paw & Eisenberg, 1997, Calderazzo et al., 1999).

According to the structural analysis, the bond lengths and angles of the title compound are generally within normal ranges. The asymmetric unit of the title compound consists of one 1,10-phenanthroline-5,6-dione molecule and one ethanol molecule. Between molecules, O—H···N and C—H···O hydrogen bonds can be found that further form one-dimensional chain. The weak π···π stacking inter­actions between adjacent chains are also observed [centroid– centroid separations being 3.6226 (11) and 3.7543 (11) Å].

Related literature top

For background to and applications of 1,10-phenanthroline-5,6-dione, see: Smith & Cagle (1947); Ma et al. (2010); Goss & Abruna (1985); Murphy et al. (2011); Wu et al. (1996); Pinczewska et al. (2012); Poteet & MacDonnell (2013); Wu et al. (2002); Poteet et al. 2013); Paw et al. (1998). For the synthesis, see: Paw & Eisenberg (1997). For a related structure, see: Calderazzo et al. (1999).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound. Intermolecular O—H···N and C—H···O hydrogen bonds are shown as green dashed lines, and π-π stacking interactions between molecules are shown as blue dashed lines.
1,10-Phenanthroline-5,6-dione ethanol monosolvate top
Crystal data top
C12H6N2O2·C2H6OZ = 2
Mr = 256.26F(000) = 268
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3064 (15) ÅCell parameters from 2355 reflections
b = 9.1055 (18) Åθ = 3.1–30.2°
c = 9.7291 (19) ŵ = 0.10 mm1
α = 96.47 (3)°T = 123 K
β = 101.68 (3)°Block, yellow
γ = 109.83 (3)°0.20 × 0.20 × 0.20 mm
V = 584.6 (2) Å3
Data collection top
Rigaku Saturn724+
diffractometer
2074 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.020
Confocal monochromatorθmax = 26.0°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1h = 99
ω scansk = 1111
5059 measured reflectionsl = 1111
2252 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.118P]
where P = (Fo2 + 2Fc2)/3
2252 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C12H6N2O2·C2H6Oγ = 109.83 (3)°
Mr = 256.26V = 584.6 (2) Å3
Triclinic, P1Z = 2
a = 7.3064 (15) ÅMo Kα radiation
b = 9.1055 (18) ŵ = 0.10 mm1
c = 9.7291 (19) ÅT = 123 K
α = 96.47 (3)°0.20 × 0.20 × 0.20 mm
β = 101.68 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
2074 reflections with I > 2σ(I)
5059 measured reflectionsRint = 0.020
2252 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.24 e Å3
2252 reflectionsΔρmin = 0.17 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C40.66468 (17)0.96363 (14)0.27101 (12)0.0211 (3)
C110.69855 (17)0.93910 (13)0.52865 (12)0.0196 (3)
C50.50156 (18)0.80403 (14)0.22423 (12)0.0237 (3)
C70.54977 (17)0.78514 (14)0.49173 (12)0.0211 (3)
C60.43997 (17)0.70995 (13)0.34035 (13)0.0239 (3)
C120.75757 (16)1.02974 (13)0.41609 (12)0.0200 (3)
C80.50365 (18)0.70329 (14)0.60099 (13)0.0250 (3)
H80.40420.59870.57940.030*
C90.60544 (18)0.77748 (15)0.74108 (13)0.0270 (3)
H90.57870.72480.81790.032*
C30.72616 (18)1.05260 (15)0.16952 (13)0.0252 (3)
H30.66511.01080.07040.030*
C10.95979 (18)1.25750 (14)0.36088 (14)0.0262 (3)
H11.06321.36030.39190.031*
C100.74812 (18)0.93131 (15)0.76688 (13)0.0261 (3)
H100.81660.98180.86360.031*
C20.87625 (19)1.20164 (15)0.21448 (14)0.0272 (3)
H20.92131.26440.14750.033*
O10.41332 (14)0.74720 (11)0.09901 (9)0.0331 (3)
O20.30275 (14)0.58111 (10)0.30567 (10)0.0333 (3)
N20.79532 (15)1.01274 (12)0.66490 (10)0.0237 (2)
N10.90359 (15)1.17542 (12)0.46054 (11)0.0233 (2)
C150.8686 (2)0.65765 (16)0.07549 (14)0.0336 (3)
H15A0.83250.75030.06210.050*
H15B0.83720.58850.01770.050*
H15C1.01300.69340.12110.050*
C140.7508 (2)0.56671 (15)0.16901 (14)0.0312 (3)
O30.76490 (13)0.66129 (10)0.30034 (9)0.0291 (2)
H14A0.598 (3)0.5214 (19)0.1167 (17)0.042 (4)*
H14B0.797 (3)0.479 (2)0.1910 (18)0.048 (5)*
H3O0.8864 (17)0.719 (2)0.3431 (19)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.0190 (6)0.0245 (6)0.0236 (6)0.0108 (5)0.0073 (4)0.0073 (5)
C110.0173 (5)0.0214 (6)0.0226 (6)0.0091 (4)0.0069 (4)0.0051 (4)
C50.0215 (6)0.0259 (6)0.0238 (6)0.0102 (5)0.0044 (5)0.0036 (5)
C70.0188 (6)0.0219 (6)0.0252 (6)0.0091 (5)0.0077 (4)0.0064 (4)
C60.0205 (6)0.0222 (6)0.0291 (6)0.0078 (5)0.0068 (5)0.0043 (5)
C120.0168 (5)0.0216 (6)0.0238 (6)0.0086 (4)0.0070 (4)0.0053 (4)
C80.0217 (6)0.0231 (6)0.0330 (7)0.0085 (5)0.0107 (5)0.0100 (5)
C90.0266 (6)0.0333 (7)0.0277 (6)0.0138 (5)0.0118 (5)0.0145 (5)
C30.0242 (6)0.0326 (7)0.0240 (6)0.0143 (5)0.0085 (5)0.0095 (5)
C10.0215 (6)0.0234 (6)0.0355 (7)0.0065 (5)0.0113 (5)0.0107 (5)
C100.0260 (6)0.0332 (7)0.0215 (6)0.0124 (5)0.0077 (5)0.0069 (5)
C20.0268 (6)0.0324 (7)0.0318 (7)0.0150 (5)0.0157 (5)0.0163 (5)
O10.0338 (5)0.0333 (5)0.0238 (5)0.0072 (4)0.0005 (4)0.0019 (4)
O20.0290 (5)0.0249 (5)0.0346 (5)0.0012 (4)0.0051 (4)0.0027 (4)
N20.0234 (5)0.0257 (5)0.0222 (5)0.0088 (4)0.0070 (4)0.0044 (4)
N10.0200 (5)0.0223 (5)0.0276 (5)0.0068 (4)0.0076 (4)0.0060 (4)
C150.0321 (7)0.0332 (7)0.0282 (7)0.0040 (5)0.0083 (5)0.0019 (5)
C140.0388 (8)0.0250 (6)0.0296 (7)0.0104 (5)0.0116 (6)0.0043 (5)
O30.0255 (5)0.0329 (5)0.0261 (5)0.0092 (4)0.0059 (4)0.0007 (4)
Geometric parameters (Å, º) top
C4—C31.3950 (17)C3—C21.3776 (19)
C4—C121.3995 (17)C3—H30.9500
C4—C51.4818 (18)C1—N11.3355 (16)
C11—N21.3436 (16)C1—C21.3907 (18)
C11—C71.4037 (17)C1—H10.9500
C11—C121.4899 (16)C10—N21.3357 (16)
C5—O11.2171 (15)C10—H100.9500
C5—C61.5411 (17)C2—H20.9500
C7—C81.3972 (17)C15—C141.5026 (18)
C7—C61.4843 (18)C15—H15A0.9800
C6—O21.2128 (16)C15—H15B0.9800
C12—N11.3448 (16)C15—H15C0.9800
C8—C91.3813 (18)C14—O31.4225 (15)
C8—H80.9500C14—H14A1.040 (18)
C9—C101.3914 (19)C14—H14B0.995 (18)
C9—H90.9500O3—H3O0.850 (10)
C3—C4—C12118.58 (11)C4—C3—H3120.3
C3—C4—C5119.93 (11)N1—C1—C2124.01 (11)
C12—C4—C5121.48 (11)N1—C1—H1118.0
N2—C11—C7122.79 (11)C2—C1—H1118.0
N2—C11—C12116.36 (10)N2—C10—C9124.42 (12)
C7—C11—C12120.85 (11)N2—C10—H10117.8
O1—C5—C4122.47 (12)C9—C10—H10117.8
O1—C5—C6119.54 (11)C3—C2—C1117.99 (11)
C4—C5—C6117.97 (10)C3—C2—H2121.0
C8—C7—C11118.69 (11)C1—C2—H2121.0
C8—C7—C6119.96 (11)C10—N2—C11117.08 (11)
C11—C7—C6121.35 (11)C1—N1—C12117.77 (11)
O2—C6—C7122.90 (12)C14—C15—H15A109.5
O2—C6—C5119.48 (11)C14—C15—H15B109.5
C7—C6—C5117.60 (10)H15A—C15—H15B109.5
N1—C12—C4122.28 (11)C14—C15—H15C109.5
N1—C12—C11117.04 (10)H15A—C15—H15C109.5
C4—C12—C11120.68 (11)H15B—C15—H15C109.5
C9—C8—C7118.69 (11)O3—C14—C15114.19 (11)
C9—C8—H8120.7O3—C14—H14A104.6 (9)
C7—C8—H8120.7C15—C14—H14A109.3 (9)
C8—C9—C10118.31 (11)O3—C14—H14B108.5 (10)
C8—C9—H9120.8C15—C14—H14B109.8 (10)
C10—C9—H9120.8H14A—C14—H14B110.5 (14)
C2—C3—C4119.37 (12)C14—O3—H3O111.5 (14)
C2—C3—H3120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.85 (1)2.08 (1)2.8258 (19)146 (2)
C1—H1···O2ii0.952.533.3381 (19)143
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.850 (10)2.080 (14)2.8258 (19)146.2 (18)
C1—H1···O2ii0.952.533.3381 (19)143.1
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors would like to thank the China Scholarship Council (CSC).

References

First citationCalderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267.  CrossRef CAS Web of Science Google Scholar
First citationMa, Q., Zhu, M. L., Yuan, C. X., Feng, S. S., Lu, L. P. & Wang, Q. M. (2010). Cryst. Growth Des. 10, 1706–1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurphy, D. M., McNamara, K., Richardson, P., Sanchez-Romaguera, V., Winpenny, R. E. P. & Yellowlees, L. J. (2011). Inorg. Chim. Acta, 374, 435–441.  Web of Science CrossRef CAS Google Scholar
First citationPaw, W., Connick, W. B. & Eisenberg, R. (1998). Inorg. Chem. 37, 3919–3926.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationPinczewska, A., Sosna, M., Bloodworth, S., Kilburn, J. D. & Bartlett, P. N. (2012). J. Am. Chem. Soc. 134, 18022–18033.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPoteet, S. A. & MacDonnell, F. M. (2013). Dalton Trans. 42, 13305–13307.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPoteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S., Armstrong, D. W., Wolf, M. O. & MacDonnell, F. M. (2013). J. Am. Chem. Soc. 135, 2419–2422.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. F. & Cagle, F. W. (1947). J. Org. Chem. 12, 781–784.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. Z., Li, H., Zhang, J. G. & Xu, J. H. (2002). Inorg. Chem. Commun. 5, 71–75.  Web of Science CrossRef CAS Google Scholar
First citationWu, Q., Maskus, M., Pariente, F., Tobalina, F., Fernandez, V. M., Lorenzo, E. & Abruna, H. D. (1996). Anal. Chem. 68, 3688–3696.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds