metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ4-decanedio­ato)cobalt(II)]

aDipartimento di Scienze Chimiche, Universita di Messina, Messina, Italy
*Correspondence e-mail: gbruno@unime.it

(Received 15 December 2013; accepted 18 March 2014; online 2 April 2014)

In the title compound, [Co(C10H16O4)]n, the CoII atom is bonded in a slightly distorted tetra­hedral environment by four O atoms from the bridging sebacate dications, comprising two separate half-ligands which lie across crystallographic inversion centres. In the three-dimensional network coordination polymer, there are two different spatial extensions of CoII atoms, one with the CoII atoms lying parallel to (100) [Co⋯Co = 4.653 (1) Å], the other lying parallel to (010) [Co⋯Co = 4.764 (1) Å].

Related literature

For background to the construction of supra­molecular frameworks, see: Gavezzotti (1994[Gavezzotti, A. (1994). Acc. Chem. Res. 27, 309-314.]); Desiraju (2003[Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.]); Sarma & Desiraju (2002[Sarma, J. A. R. P. & Desiraju, G. R. (2002). Cryst. Growth Des. 2, 93-100.]); Biradha et al. (1998[Biradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894-11903.]); Hosseini (2003[Hosseini, M. W. (2003). Coord. Chem. Rev. 240, 157-166.]). For the structure of sebacic acid, see: Morrison & Robertson (1949[Morrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc., pp. 993-1001.]); Bond et al. (2001[Bond, A. D., Edwards, M. R. & Jones, W. (2001). Acta Cryst. E57, o141-o142.]). For its use in constructing stable metal-organic frameworks, see: Borkowski & Cahill (2004[Borkowski, L. A. & Cahill, C. L. (2004). Acta Cryst. C60, m159-m161.], 2006[Borkowski, L. A. & Cahill, C. L. (2006). Cryst. Growth Des. 10, 2241-2247.]); Thuéry (2008[Thuéry, P. (2008). Cryst. Growth Des. 11, 4132-4143.]); Zhou et al. (2010[Zhou, Y.-L., Liang, H. & Zeng, M.-H. (2010). Acta Cryst. E66, m405.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H16O4)]

  • Mr = 259.16

  • Monoclinic, I 2/a

  • a = 9.276 (1) Å

  • b = 4.764 (1) Å

  • c = 50.154 (3) Å

  • β = 95.02 (2)°

  • V = 2207.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 295 K

  • 0.28 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.661, Tmax = 0.746

  • 32758 measured reflections

  • 2477 independent reflections

  • 2175 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.157

  • S = 1.01

  • 2477 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.968 (3)
Co1—O2 1.953 (3)
Co1—O3i 1.972 (3)
Co1—O4ii 1.963 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal engineering is primarily concerned with the ability to predictably synthesize supramolecular structures from well designed building-blocks (Desiraju, 2003). To date it is still a big challenge the exact prediction of the structure of a molecular solid because crystal packing is driven by many weak non-covalent interactions (Gavezzotti, 1994). Suitable substrates to design specific architectures should bear functional groups apt to develop predefined interactions synthones (Sarma & Desiraju, 2002) for this purpose, often, planar aromatic or linear aliphatic molecules with carboxylic groups (Biradha et al., 1998) were exploited as building-blocks (Hosseini, 2003) to yield particular crystal lattice. Crystal structure of sebacic acid was first determined by Morrison & Robertson (1949) it has been redetermined at low temperature (180 K) (Bond et al., 2001). Sebacic acid both in its protonated or deprotonated forms has been found in several metal complexes, either coordinated to the metal center or as a counter ion, or in co-crystals in its protonated form. In all the examined compounds, the alkyl chain of either the free or coordinated sebacate or sebacic acid are usually linear with a few exceptions (Zhou et al., 2010; Thuéry, 2008). In the title zinc sebacate complex, [CoC10H16O4]n the linear chain is evidenced by the C1–C10 separation of 11.452 (4) Å, equal within the e.s.d's to the corresponding value of 11.466 (5) Å found in the low- temperature X-ray structure of sebacic acid (Bond et al., 2001).The shortest separation [11.419 (4) Å] for the linear C1···C10 chain was found in a dimeric uranil sebacate complex (Borkowski & Cahill, 2006).

The asymmetric unit of the title complex comprises a cobalt cation coordinated by four carboxyl O-atom donors from two non-equivalent half-sebacate anions which lie across crystallographic inversion centres (Fig. 1). The cobalt has close to ideal tetrahedral geometry [Co—O range, 1.953 (3) – 1.972 (3) Å (Table 1)]. The C—O bond lengths in the carboxylate groups range from 1.252 (5) Å to 1.262 (5) Å, this narrow range being smaller than the usual range found in monodentate carboxylates. The title complex forms a three-dimensional network polymer in which there are two different arrangenments of cobalt atoms (Fig. 2). The column of cobalt atoms with the oxygen atoms linked to it extends parallel to the crystallographic b axis and in this column the Co–Co separation is exactly the length of b axis [4.7640 (7) Å]. The second column extends almost parallel to (1 0 0) with a Co···Co separation of 4.6528 (8) Å. The overall molecular packing is illustrated in Fig. 3.

Related literature top

For background to the construction of supramolecular frameworks, see Gavezzotti (1994); Desiraju (2003); Sarma & Desiraju (2002); Biradha et al. (1998); Hosseini (2003). For the structure of sebacic acid, see: Morrison & Robertson (1949); Bond et al. (2001). For its use in constructing stable metal-organic frameworks, see: Borkowski & Cahill (2004, 2006); Thuéry (2008); Zhou et al. (2010).

Experimental top

The polymer was synthesized by reaction of cobalt chloride hexahydrate (0.05 mmol) with sebacic acid (0.05 mmol) sealed in a teflon-lined stainless steel autoclave filled with 8 ml of water, which was heated at 130 °C for 3 days under autogenous pressure. After slow cooling to room temperature over 6 h, two different types of crystal were observed, the expected pink violet product, the title complex (yield 50%) and transparent colourless crystals, which tested separately appear to be unreacted sebacic acid.

Refinement top

The H atoms were included in the refinement at calculated positions [C—H = 0.97 Å] and were allowed to ride, with Ueq(H) = 1.2Ueq(H).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering for the title complex with non H-atoms represented as displacement ellipsoids plotted at the 50% probability level and H atoms shown as small spheres of arbitrary radius. The broken bonds C5—C5iii and C6—C6iv link the inversion-related halves of the sebacate ligands. For symmetry codes (i) and (ii), see Table 1. For other codes: (iii) -x + 3/2, -y - 1/2, -z + 1/2; (iv) -x, -y, -z.
[Figure 2] Fig. 2. Perspective view of the three-dimensional network structure, showing the polymeric extensions.
[Figure 3] Fig. 3. Packing diagram of the three-dimensional compound viewed along the b axis.
Poly[(µ4-decanedioato)cobalt(II)] top
Crystal data top
[Co(C10H16O4)]F(000) = 1080
Mr = 259.16Dx = 1.559 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 98 reflections
a = 9.276 (1) Åθ = 2.2–27.5°
b = 4.764 (1) ŵ = 1.55 mm1
c = 50.154 (3) ÅT = 295 K
β = 95.02 (2)°Prismatic, pink
V = 2207.9 (5) Å30.28 × 0.21 × 0.17 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2477 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.5°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1212
Tmin = 0.661, Tmax = 0.746k = 66
32758 measured reflectionsl = 6565
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0975P)2 + 11.5316P]
where P = (Fo2 + 2Fc2)/3
2477 reflections(Δ/σ)max = 0.005
136 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Co(C10H16O4)]V = 2207.9 (5) Å3
Mr = 259.16Z = 8
Monoclinic, I2/aMo Kα radiation
a = 9.276 (1) ŵ = 1.55 mm1
b = 4.764 (1) ÅT = 295 K
c = 50.154 (3) Å0.28 × 0.21 × 0.17 mm
β = 95.02 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2477 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2175 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.746Rint = 0.044
32758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0975P)2 + 11.5316P]
where P = (Fo2 + 2Fc2)/3
2477 reflectionsΔρmax = 0.59 e Å3
136 parametersΔρmin = 1.13 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Structure has been solved and refined in the centrosymmetric monoclinic C2/c space group. Refining the structure in the non standard I2/a space group leads to identical R value results, but at a value of G.o.f. (1.014) significantly closer to the ideal value of 1, for this reason we prefer the non-standard space group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.47978 (6)0.46111 (10)0.12353 (1)0.0250 (2)
O10.6900 (3)0.4833 (6)0.13284 (6)0.0309 (8)
O20.4577 (4)0.0653 (6)0.11391 (6)0.0366 (9)
O30.8963 (3)0.3988 (7)0.15584 (6)0.0323 (8)
O40.4116 (3)0.3222 (6)0.09159 (6)0.0325 (8)
C10.7614 (4)0.3735 (8)0.15271 (7)0.0257 (10)
C20.6850 (4)0.2035 (10)0.17252 (8)0.0354 (11)
C30.7826 (5)0.0818 (10)0.19561 (9)0.0376 (14)
C40.6969 (5)0.0629 (11)0.21590 (10)0.0405 (14)
C50.7919 (5)0.1789 (11)0.23957 (9)0.0418 (14)
C60.0421 (5)0.0875 (10)0.01058 (9)0.0363 (12)
C70.1253 (5)0.0870 (9)0.03230 (8)0.0354 (12)
C80.2129 (4)0.0888 (9)0.05305 (8)0.0331 (11)
C90.2964 (5)0.0920 (9)0.07393 (8)0.0323 (12)
C100.3946 (4)0.0612 (7)0.09434 (8)0.0246 (10)
H2A0.634200.050400.163000.0430*
H2B0.612900.321600.179800.0430*
H3A0.848700.051800.188600.0450*
H3B0.839700.231500.204400.0450*
H4A0.641900.215500.207200.0490*
H4B0.628700.069700.222400.0490*
H5A0.859200.313000.233000.0510*
H5B0.848200.026400.248000.0510*
H6A0.109900.205100.002000.0440*
H6B0.024500.210000.018900.0440*
H7A0.190000.213300.024000.0420*
H7B0.057200.200700.041200.0420*
H8A0.280100.205100.044200.0400*
H8B0.148300.211900.061800.0400*
H9A0.354100.224900.064800.0390*
H9B0.227500.199200.083300.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0240 (3)0.0266 (3)0.0228 (3)0.0029 (2)0.0062 (2)0.0017 (2)
O10.0254 (14)0.0385 (15)0.0282 (14)0.0012 (10)0.0013 (11)0.0082 (11)
O20.0502 (19)0.0249 (14)0.0306 (15)0.0056 (12)0.0197 (13)0.0032 (11)
O30.0215 (13)0.0426 (16)0.0320 (14)0.0037 (11)0.0013 (10)0.0053 (12)
O40.0408 (15)0.0236 (14)0.0309 (14)0.0030 (11)0.0095 (11)0.0003 (10)
C10.0223 (16)0.0287 (18)0.0258 (17)0.0032 (14)0.0001 (13)0.0015 (14)
C20.0247 (18)0.047 (2)0.034 (2)0.0021 (16)0.0002 (15)0.0122 (17)
C30.027 (2)0.051 (3)0.034 (2)0.0023 (17)0.0013 (16)0.0137 (18)
C40.030 (2)0.056 (3)0.035 (2)0.0023 (18)0.0000 (17)0.0147 (19)
C50.033 (2)0.055 (3)0.037 (2)0.0004 (19)0.0009 (17)0.015 (2)
C60.031 (2)0.042 (2)0.033 (2)0.0033 (17)0.0143 (17)0.0003 (17)
C70.032 (2)0.040 (2)0.031 (2)0.0028 (17)0.0148 (16)0.0004 (16)
C80.0292 (19)0.033 (2)0.034 (2)0.0009 (15)0.0148 (16)0.0002 (16)
C90.034 (2)0.030 (2)0.030 (2)0.0037 (16)0.0135 (15)0.0003 (15)
C100.0206 (17)0.0259 (18)0.0263 (18)0.0021 (13)0.0037 (14)0.0008 (13)
Geometric parameters (Å, º) top
Co1—O11.968 (3)C9—C101.499 (6)
Co1—O21.953 (3)C2—H2A0.9700
Co1—O3i1.972 (3)C2—H2B0.9700
Co1—O4ii1.963 (3)C3—H3A0.9700
O1—C11.261 (5)C3—H3B0.9700
O2—C101.252 (5)C4—H4A0.9700
O3—C11.253 (5)C4—H4B0.9700
O4—C101.262 (4)C5—H5A0.9700
C1—C21.506 (6)C5—H5B0.9700
C2—C31.521 (6)C6—H6A0.9700
C3—C41.511 (7)C6—H6B0.9700
C4—C51.519 (7)C7—H7A0.9700
C5—C5iii1.517 (7)C7—H7B0.9700
C6—C71.525 (6)C8—H8A0.9700
C6—C6iv1.512 (7)C8—H8B0.9700
C7—C81.516 (6)C9—H9A0.9700
C8—C91.515 (6)C9—H9B0.9700
O1—Co1—O2101.00 (14)C4—C3—H3B109.00
O1—Co1—O4ii114.02 (12)H3A—C3—H3B108.00
O1—Co1—O3i103.83 (12)C3—C4—H4A109.00
O2—Co1—O4ii106.66 (13)C3—C4—H4B109.00
O2—Co1—O3i119.31 (14)C5—C4—H4A109.00
O3i—Co1—O4ii111.77 (13)C5—C4—H4B109.00
Co1—O1—C1127.3 (3)H4A—C4—H4B108.00
Co1—O2—C10133.6 (3)C4—C5—H5A109.00
Co1v—O3—C1112.9 (2)C4—C5—H5B109.00
Co1vi—O4—C10117.6 (3)H5A—C5—H5B108.00
O1—C1—O3120.6 (3)C5iii—C5—H5A109.00
O1—C1—C2120.0 (3)C5iii—C5—H5B109.00
O3—C1—C2119.4 (3)C7—C6—H6A109.00
C1—C2—C3115.1 (3)C7—C6—H6B109.00
C2—C3—C4111.9 (4)H6A—C6—H6B108.00
C3—C4—C5112.9 (4)C6iv—C6—H6A109.00
C4—C5—C5iii113.8 (4)C6iv—C6—H6B109.00
C6iv—C6—C7113.5 (4)C6—C7—H7A109.00
C6—C7—C8113.4 (4)C6—C7—H7B109.00
C7—C8—C9111.8 (4)C8—C7—H7A109.00
C8—C9—C10116.0 (3)C8—C7—H7B109.00
O2—C10—O4120.4 (4)H7A—C7—H7B108.00
O2—C10—C9121.0 (3)C7—C8—H8A109.00
O4—C10—C9118.6 (3)C7—C8—H8B109.00
C1—C2—H2A108.00C9—C8—H8A109.00
C1—C2—H2B108.00C9—C8—H8B109.00
C3—C2—H2A109.00H8A—C8—H8B108.00
C3—C2—H2B109.00C8—C9—H9A108.00
H2A—C2—H2B107.00C8—C9—H9B108.00
C2—C3—H3A109.00C10—C9—H9A108.00
C2—C3—H3B109.00C10—C9—H9B108.00
C4—C3—H3A109.00H9A—C9—H9B107.00
O2—Co1—O1—C168.6 (3)Co1v—O3—C1—C2164.7 (3)
O4ii—Co1—O1—C1177.4 (3)Co1vi—O4—C10—O220.7 (5)
O3i—Co1—O1—C155.5 (3)Co1vi—O4—C10—C9158.6 (3)
O1—Co1—O2—C10130.9 (4)O1—C1—C2—C3180.0 (4)
O4ii—Co1—O2—C1011.5 (4)O3—C1—C2—C31.7 (6)
O3i—Co1—O2—C10116.2 (4)C1—C2—C3—C4174.8 (4)
O1—Co1—O4ii—C10ii80.3 (3)C2—C3—C4—C5178.3 (4)
O2—Co1—O4ii—C10ii169.1 (3)C3—C4—C5—C5iii179.1 (4)
O1—Co1—O3i—C1i173.9 (3)C4—C5—C5iii—C4iii180.0 (4)
O2—Co1—O3i—C1i74.8 (3)C6iv—C6—C7—C8178.4 (4)
Co1—O1—C1—O3178.1 (3)C7—C6—C6iv—C7iv180.0 (4)
Co1—O1—C1—C20.2 (5)C6—C7—C8—C9178.8 (4)
Co1—O2—C10—O4171.7 (3)C7—C8—C9—C10176.0 (3)
Co1—O2—C10—C99.0 (6)C8—C9—C10—O2173.1 (4)
Co1v—O3—C1—O113.6 (5)C8—C9—C10—O46.2 (5)
Symmetry codes: (i) x1/2, y+1, z; (ii) x, y+1, z; (iii) x+3/2, y1/2, z+1/2; (iv) x, y, z; (v) x+1/2, y+1, z; (vi) x, y1, z.
Selected bond lengths (Å) top
Co1—O11.968 (3)Co1—O3i1.972 (3)
Co1—O21.953 (3)Co1—O4ii1.963 (3)
Symmetry codes: (i) x1/2, y+1, z; (ii) x, y+1, z.
 

References

First citationBiradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894–11903.  Web of Science CSD CrossRef CAS
First citationBond, A. D., Edwards, M. R. & Jones, W. (2001). Acta Cryst. E57, o141–o142.  CSD CrossRef CAS IUCr Journals
First citationBorkowski, L. A. & Cahill, C. L. (2004). Acta Cryst. C60, m159–m161.  Web of Science CSD CrossRef CAS IUCr Journals
First citationBorkowski, L. A. & Cahill, C. L. (2006). Cryst. Growth Des. 10, 2241–2247.  Web of Science CSD CrossRef
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDesiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.  Web of Science CrossRef CAS
First citationGavezzotti, A. (1994). Acc. Chem. Res. 27, 309–314.  CrossRef CAS Web of Science
First citationHosseini, M. W. (2003). Coord. Chem. Rev. 240, 157–166.  Web of Science CrossRef CAS
First citationMorrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc., pp. 993–1001.
First citationSarma, J. A. R. P. & Desiraju, G. R. (2002). Cryst. Growth Des. 2, 93–100.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationThuéry, P. (2008). Cryst. Growth Des. 11, 4132–4143.
First citationZhou, Y.-L., Liang, H. & Zeng, M.-H. (2010). Acta Cryst. E66, m405.  Web of Science CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds