organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Methyl-1,3,4-oxa­diazol-2-yl)phenyl acetate

aDepto. de Química - Campus I - Universidade Federal da Paraíba, 58051-900 - João Pessoa, PB, Brazil, and bDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 - Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: adailton.bortoluzzi@ufsc.br

(Received 21 January 2014; accepted 9 April 2014; online 16 April 2014)

In the title compound, C11H10N2O3, which is a potential bioactive compound, the benzene and oxa­diazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane is rotated out of the benzene plane [dihedral angle = 82.69 (9)°]. In the crystal, the mol­ecules form layers down the a axis with weak ππ inter­actions between the oxa­diazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].

Related literature

For the bioactivity of 1,3,4-oxa­diazole derivatives, see: Boström et al. (2012[Boström, J., Hogner, A., Llinàs, A., Wellner, E. & Plowright, A. T. (2012). J. Med. Chem. 55, 1817-1830.]); Rajak et al. (2009[Rajak, H., Kharya, M. D. & Mishra, P. (2009). Int. J. Pharm. Sci. Nanotech. 1, 390-406.]); Polshettiwar & Varma (2008[Polshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 879-883.]). For the properties of the 1,3,4-oxa­diazole heterocycle, see: Bolton & Kim (2007[Bolton, O. & Kim, J. (2007). J. Mater. Chem. 17, 1981-1988.]); Liu et al. (2007[Liu, Y., Zong, L., Zheng, L., Wu, L. & Cheng, Y. (2007). Polymer, 48, 6799-6807.]); Kulkarni et al. (2004[Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556-4573.]). For material chemistry applications, see: Hughes & Bryce (2005[Hughes, G. & Bryce, B. (2005). J. Mater. Chem. 15, 94-107.]); Wang et al. (2011[Wang, X., Guang, S., Xu, H., Su, X. & Lin, N. (2011). J. Mater. Chem. 21, 12941-12948.]); Cristiano et al. (2006[Cristiano, R., Vieira, A. A., Ely, F. & Gallardo, H. (2006). Liq. Cryst. 33, 381-390.]); Han (2013[Han, J. (2013). J. Mater. Chem. C1, 7779-7797.]). For the synthesis, see: Gallardo et al. (2001[Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst. 28, 1343-1352.]). For related structures, see: Vencato et al. (1996[Vencato, I., Gallardo, H. & Meyer, E. (1996). Acta Cryst. C52, 2301-2303.]); Gutov (2013[Gutov, O. V. (2013). Cryst. Growth Des. 13, 3953-3957.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O3

  • Mr = 218.21

  • Monoclinic, P 21 /n

  • a = 6.6335 (6) Å

  • b = 16.925 (3) Å

  • c = 9.5078 (6) Å

  • β = 92.113 (6)°

  • V = 1066.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.50 × 0.36 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1998 measured reflections

  • 1885 independent reflections

  • 1403 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.136

  • S = 1.11

  • 1885 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules containing the heterocycle 1,3,4-oxadiazole exhibit a wide range of biological activities, such as anticancer, antidiabetic, anti-inflammatory, analgesic, antibacterial, anticonvulsant, anti-HIV, herbicidal, fungicidal, pesticidal and antihypertensive (Boström et al., 2012; Rajak et al., 2009). This five-membered ring has been studied as a potential pharmacophore in a variety of chemical structures, due to its favorable metabolic profile and its capability of forming H-bonding associations (Polshettiwar & Varma, 2008; Gutov, 2013). Furthermore, aromatic substituted 1,3,4-oxadiazoles have widely been used in electro-optical devices due to their good thermal and chemical stability, blue luminescence with high quantum yield and electron transporting capabilities (Hughes & Bryce, 2005; Han, 2013).

As part of our continuing interest in the synthesis and evaluation of bioactive molecules containing N-heterocycles, we now report the synthesis and structure of the title compound C11H10N2O3. In this structure (Fig. 1), the benzene and oxadiazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane defined by O1, O2, C13, C14 is rotated out of the benzene plane giving a dihedral angle of 82.69 (9)° which corresponds to a torsion angle C6—C7—O1—C13 of 83.26 (22)°. In the crystal the molecules form layers down the a axis with weak inter-layer ππ interactions between the oxadiazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].

Related literature top

For the bioactivity of 1,3,4-oxadiazole derivatives, see: Boström et al. (2012); Rajak et al. (2009); Polshettiwar & Varma (2008). For the properties of the 1,3,4-oxadiazole heterocycle, see: Bolton & Kim (2007); Liu et al. (2007); Kulkarni et al. (2004). For material chemistry applications, see: Hughes & Bryce (2005); Wang et al. (2011); Cristiano et al. (2006); Han (2013). For the synthesis, see: Gallardo et al. (2001). For related structures, see: Vencato et al. (1996); Gutov (2013).

Experimental top

A mixture of 5-(2-hydroxyphenyl)tetrazole (Gallardo et al., 2001) (2.0 g, 12.3 mmol) and acetic anhydride (6.3 g, 61.5 mmol) was heated under reflux for 2 h. The reaction mixture was poured into water/ice, the precipitate was filtered, washed with cold water and dried under vacuum to give the title compound as a white solid (1.88 g, 70%). Crystals suitable for X-ray diffraction were obtained from slow evaporation of the CDCl3 solution. M.p.= 108 °C. 1H NMR (CDCl3) = 8.00 (dd, J = 7.8 and 1.6 Hz, 1H), 7.60 - 7.51 (m, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 2.60 (s, 3H), 2.42 (s, 3H); 13C NMR (CDCl3) = 169.88, 163.35, 162.12, 148.68, 132.67, 129.21, 126.60, 124.22, 117.65, 21.20, 11.08.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at their idealized positions with distances of 0.93 Å for C—HAr and 0.96 Å for CH3 groups and allowed to ride. Their Ueq were fixed at 1.2 and 1.5 times Uiso of the preceding atom for aromatic and methyl groups, respectively. H atoms of the methyl groups were treated as ideally disordered over two sites.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-(5-Methyl-1,3,4-oxadiazol-2-yl)phenyl acetate top
Crystal data top
C11H10N2O3Dx = 1.359 Mg m3
Mr = 218.21Melting point: 381 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 6.6335 (6) ÅCell parameters from 25 reflections
b = 16.925 (3) Åθ = 6.5–15.6°
c = 9.5078 (6) ŵ = 0.10 mm1
β = 92.113 (6)°T = 293 K
V = 1066.7 (2) Å3Block, colorless
Z = 40.50 × 0.36 × 0.16 mm
F(000) = 456
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 25.1°, θmin = 2.4°
Radiation source: fine-focus sealed tubeh = 77
ω–2θ scansk = 200
1998 measured reflectionsl = 110
1885 independent reflections3 standard reflections every 200 reflections
1403 reflections with I > 2σ(I) intensity decay: 1%
Rint = 0.018
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.07P)2 + 0.1662P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.24 e Å3
1885 reflectionsΔρmin = 0.20 e Å3
146 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.020 (4)
Crystal data top
C11H10N2O3V = 1066.7 (2) Å3
Mr = 218.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.6335 (6) ŵ = 0.10 mm1
b = 16.925 (3) ÅT = 293 K
c = 9.5078 (6) Å0.50 × 0.36 × 0.16 mm
β = 92.113 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
1998 measured reflections3 standard reflections every 200 reflections
1885 independent reflections intensity decay: 1%
1403 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.11Δρmax = 0.24 e Å3
1885 reflectionsΔρmin = 0.20 e Å3
146 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C30.7116 (3)0.20207 (12)0.5466 (2)0.0529 (5)
C50.7187 (3)0.09558 (12)0.42764 (19)0.0449 (5)
C60.7352 (3)0.00994 (11)0.4065 (2)0.0438 (5)
C70.7258 (3)0.02402 (12)0.2733 (2)0.0466 (5)
C80.7460 (3)0.10475 (13)0.2556 (2)0.0572 (6)
H80.73880.12650.16580.069*
C90.7766 (3)0.15261 (13)0.3706 (3)0.0613 (6)
H90.79120.20680.35870.074*
C100.7858 (3)0.12053 (13)0.5041 (3)0.0602 (6)
H100.80530.15320.58200.072*
C110.7660 (3)0.03993 (13)0.5220 (2)0.0509 (5)
H110.77330.01870.61230.061*
C120.7142 (4)0.25279 (14)0.6729 (3)0.0694 (7)
H12A0.72530.22040.75570.104*0.5
H12B0.59160.28290.67410.104*0.5
H12C0.82740.28810.67120.104*0.5
H12D0.70430.30720.64490.104*0.5
H12E0.83790.24470.72660.104*0.5
H12F0.60210.23950.72950.104*0.5
C130.8374 (4)0.06195 (13)0.0975 (2)0.0552 (6)
C140.7638 (4)0.11009 (17)0.0244 (3)0.0776 (8)
H14A0.62050.10380.03710.116*0.5
H14B0.82850.09290.10770.116*0.5
H14C0.79490.16470.00730.116*0.5
H14D0.87540.13710.06430.116*0.5
H14E0.66740.14810.00630.116*0.5
H14F0.70110.07620.09420.116*0.5
N10.7036 (3)0.15221 (10)0.33808 (19)0.0611 (5)
N20.6990 (3)0.22223 (11)0.4170 (2)0.0669 (6)
O10.6816 (2)0.02180 (8)0.15409 (14)0.0548 (4)
O21.0070 (2)0.05640 (10)0.14221 (17)0.0666 (5)
O40.7239 (2)0.12238 (8)0.56256 (14)0.0491 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0587 (13)0.0460 (12)0.0541 (13)0.0042 (10)0.0026 (10)0.0013 (10)
C50.0451 (11)0.0506 (11)0.0391 (10)0.0001 (8)0.0021 (8)0.0012 (9)
C60.0368 (10)0.0470 (11)0.0476 (11)0.0006 (8)0.0021 (8)0.0024 (9)
C70.0421 (10)0.0490 (12)0.0487 (12)0.0030 (8)0.0011 (8)0.0009 (9)
C80.0546 (12)0.0531 (13)0.0639 (14)0.0025 (10)0.0026 (10)0.0103 (11)
C90.0547 (14)0.0443 (12)0.0853 (18)0.0006 (10)0.0070 (12)0.0026 (12)
C100.0504 (12)0.0543 (13)0.0762 (16)0.0013 (10)0.0056 (11)0.0214 (11)
C110.0452 (11)0.0561 (13)0.0517 (12)0.0011 (9)0.0057 (9)0.0100 (10)
C120.0863 (17)0.0600 (14)0.0617 (15)0.0041 (13)0.0012 (12)0.0142 (11)
C130.0674 (15)0.0549 (13)0.0434 (11)0.0016 (11)0.0032 (10)0.0043 (9)
C140.0953 (19)0.0802 (18)0.0571 (14)0.0043 (14)0.0002 (13)0.0150 (13)
N10.0915 (14)0.0473 (10)0.0446 (11)0.0068 (9)0.0045 (9)0.0027 (8)
N20.0977 (15)0.0453 (10)0.0580 (12)0.0072 (10)0.0057 (10)0.0011 (9)
O10.0577 (9)0.0606 (9)0.0456 (8)0.0032 (7)0.0046 (6)0.0004 (7)
O20.0631 (11)0.0777 (12)0.0591 (10)0.0034 (8)0.0038 (8)0.0065 (8)
O40.0542 (8)0.0504 (8)0.0427 (8)0.0029 (6)0.0007 (6)0.0010 (6)
Geometric parameters (Å, º) top
C3—N21.278 (3)C12—H12A0.9600
C3—O41.359 (2)C12—H12B0.9600
C3—C121.476 (3)C12—H12C0.9600
C5—N11.283 (3)C12—H12D0.9600
C5—O41.360 (2)C12—H12E0.9600
C5—C61.468 (3)C12—H12F0.9600
C6—C71.390 (3)C13—O21.191 (3)
C6—C111.395 (3)C13—O11.364 (3)
C7—C81.384 (3)C13—C141.485 (3)
C7—O11.395 (2)C14—H14A0.9600
C8—C91.370 (3)C14—H14B0.9600
C8—H80.9300C14—H14C0.9600
C9—C101.380 (3)C14—H14D0.9600
C9—H90.9300C14—H14E0.9600
C10—C111.382 (3)C14—H14F0.9600
C10—H100.9300N1—N21.404 (3)
C11—H110.9300
N2—C3—O4111.94 (18)H12C—C12—H12E56.3
N2—C3—C12128.9 (2)H12D—C12—H12E109.5
O4—C3—C12119.19 (19)C3—C12—H12F109.5
N1—C5—O4112.05 (17)H12A—C12—H12F56.3
N1—C5—C6130.60 (18)H12B—C12—H12F56.3
O4—C5—C6117.34 (16)H12C—C12—H12F141.1
C7—C6—C11117.89 (19)H12D—C12—H12F109.5
C7—C6—C5122.15 (17)H12E—C12—H12F109.5
C11—C6—C5119.94 (18)O2—C13—O1122.6 (2)
C8—C7—C6121.16 (19)O2—C13—C14126.9 (2)
C8—C7—O1117.97 (18)O1—C13—C14110.4 (2)
C6—C7—O1120.73 (17)C13—C14—H14A109.5
C9—C8—C7120.0 (2)C13—C14—H14B109.5
C9—C8—H8120.0H14A—C14—H14B109.5
C7—C8—H8120.0C13—C14—H14C109.5
C8—C9—C10120.1 (2)H14A—C14—H14C109.5
C8—C9—H9119.9H14B—C14—H14C109.5
C10—C9—H9119.9C13—C14—H14D109.5
C9—C10—C11120.1 (2)H14A—C14—H14D141.1
C9—C10—H10120.0H14B—C14—H14D56.3
C11—C10—H10120.0H14C—C14—H14D56.3
C10—C11—C6120.8 (2)C13—C14—H14E109.5
C10—C11—H11119.6H14A—C14—H14E56.3
C6—C11—H11119.6H14B—C14—H14E141.1
C3—C12—H12A109.5H14C—C14—H14E56.3
C3—C12—H12B109.5H14D—C14—H14E109.5
H12A—C12—H12B109.5C13—C14—H14F109.5
C3—C12—H12C109.5H14A—C14—H14F56.3
H12A—C12—H12C109.5H14B—C14—H14F56.3
H12B—C12—H12C109.5H14C—C14—H14F141.1
C3—C12—H12D109.5H14D—C14—H14F109.5
H12A—C12—H12D141.1H14E—C14—H14F109.5
H12B—C12—H12D56.3C5—N1—N2106.16 (17)
H12C—C12—H12D56.3C3—N2—N1106.76 (17)
C3—C12—H12E109.5C13—O1—C7117.22 (16)
H12A—C12—H12E56.3C3—O4—C5103.10 (15)
H12B—C12—H12E141.1
C7—O1—C13—C14177.68 (18)N1—C5—C6—C11175.0 (2)
C13—O1—C7—C683.3 (2)O4—C5—C6—C113.4 (3)
C13—O1—C7—C8101.1 (2)N1—C5—C6—C73.5 (3)
C7—O1—C13—O23.3 (3)C11—C6—C7—O1175.59 (17)
C3—O4—C5—C6178.30 (17)C7—C6—C11—C100.2 (3)
C5—O4—C3—N20.4 (2)C11—C6—C7—C80.1 (3)
C3—O4—C5—N10.4 (2)C5—C6—C7—C8178.61 (19)
C5—O4—C3—C12179.60 (19)C5—C6—C7—O15.9 (3)
C5—N1—N2—C30.0 (2)C5—C6—C11—C10178.75 (19)
N2—N1—C5—O40.2 (2)C6—C7—C8—C90.2 (3)
N2—N1—C5—C6178.2 (2)O1—C7—C8—C9175.85 (18)
N1—N2—C3—O40.2 (2)C7—C8—C9—C100.5 (3)
N1—N2—C3—C12179.7 (2)C8—C9—C10—C110.6 (3)
O4—C5—C6—C7178.11 (18)C9—C10—C11—C60.5 (3)

Experimental details

Crystal data
Chemical formulaC11H10N2O3
Mr218.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.6335 (6), 16.925 (3), 9.5078 (6)
β (°) 92.113 (6)
V3)1066.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.36 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1998, 1885, 1403
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.136, 1.11
No. of reflections1885
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Financiadora de Estudos e Projetos (FINEP) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBolton, O. & Kim, J. (2007). J. Mater. Chem. 17, 1981–1988.  Web of Science CrossRef CAS
First citationBoström, J., Hogner, A., Llinàs, A., Wellner, E. & Plowright, A. T. (2012). J. Med. Chem. 55, 1817–1830.  Web of Science PubMed
First citationCristiano, R., Vieira, A. A., Ely, F. & Gallardo, H. (2006). Liq. Cryst. 33, 381–390.  Web of Science CrossRef CAS
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
First citationGallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst. 28, 1343–1352.  CSD CrossRef CAS
First citationGutov, O. V. (2013). Cryst. Growth Des. 13, 3953–3957.  Web of Science CSD CrossRef CAS
First citationHan, J. (2013). J. Mater. Chem. C1, 7779–7797.
First citationHughes, G. & Bryce, B. (2005). J. Mater. Chem. 15, 94–107.  Web of Science CrossRef CAS
First citationKulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.  Web of Science CrossRef CAS
First citationLiu, Y., Zong, L., Zheng, L., Wu, L. & Cheng, Y. (2007). Polymer, 48, 6799–6807.  Web of Science CrossRef CAS
First citationPolshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 879–883.  Web of Science CrossRef CAS
First citationRajak, H., Kharya, M. D. & Mishra, P. (2009). Int. J. Pharm. Sci. Nanotech. 1, 390–406.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationVencato, I., Gallardo, H. & Meyer, E. (1996). Acta Cryst. C52, 2301–2303.  CSD CrossRef CAS Web of Science IUCr Journals
First citationWang, X., Guang, S., Xu, H., Su, X. & Lin, N. (2011). J. Mater. Chem. 21, 12941–12948.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds