Structure Reports

Online
ISSN 1600-5368

trans-2,5-Dimethylpiperazine-1,4-diium dinitrate

Sofian Gatfaoui, ${ }^{\text {a }}$ Thierry Roisnel, ${ }^{\text {b }}$ Hassouna Dhaouadi ${ }^{\text {c* }}$ and Houda Marouani ${ }^{\text {a }}$

${ }^{\text {a }}$ Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, ${ }^{\mathbf{b}}$ Centre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and ${ }^{\text {c }}$ Laboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de SidiThabet, 2020 Tunis, Tunisia
Correspondence e-mail: dhaouadihassouna@yahoo.fr

Received 9 May 2014; accepted 25 May 2014
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.090$; data-to-parameter ratio $=16.1$.

In the structure of the title salt, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$, the cations are connected to the anions through bifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating corrugated layers parallel to the (100) plane. The organic cation is centrosymmetric and the diprotonated piperazine ring adopts a chair conformation, with the methyl groups occupying equatorial positions.

Related literature

For pharmacological properties of piperazine, see: Conrado et al. (2008). For related structures, see: Gatfaoui et al. (2013, 2014a,b); Marouani et al. (2012); Kefi et al. (2013). For a complex of the title cation, see: Rother et al. (1997). For puckering parameters, see: Cremer \& Pople (1975).

$2 \mathrm{NO}_{3}^{-}$

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{NO}_{3}{ }^{-}$

$$
b=10.0277(10) \AA
$$

$M_{r}=240.23$
Monoclinic, $P 2_{6} / c$
$c=8.3112$ (8) A
$\beta=116.149$ (8$)^{\circ}$
$a=7.0357$ (8) A
$Z=2$
$T=150 \mathrm{~K}$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
Data collection
Bruker APEXII diffractometer Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\text {min }}=0.827, T_{\text {max }}=0.970$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 74$ parameters
$w R\left(F^{2}\right)=0.090$
$S=1.11$
1195 reflections

H -atom parameters constrained
$0.58 \times 0.46 \times 0.23 \mathrm{~mm}$

4126 measured reflections 1195 independent reflections 1059 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$
$\Delta \rho_{\max }=0.30 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {i }}$	0.90	1.99	2.8471 (14)	158
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {ii }}$	0.90	2.45	2.9899 (13)	119
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1$	0.90	2.07	2.9057 (13)	153
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O}$	0.90	2.42	3.2172 (14)	149
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {iii }}$	0.98	2.50	3.2614 (14)	134

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg \& Putz 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2529).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. \& Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699-707.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gatfaoui, S., Dhaouadi, H., Roisnel, T., Rzaigui, M. \& Marouani, H. (2014a). Acta Cryst. E70, o398-o399.
Gatfaoui, S., Marouani, H. \& Rzaigui, M. (2013). Acta Cryst. E69, o1453.
Gatfaoui, S., Rzaigui, M. \& Marouani, H. (2014b). Acta Cryst. E70, o198.
Kefi, C., Marouani, H. \& Rzaigui, M. (2013). Acta Cryst. E69, o1475.
Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. \& Rzaigui, M. (2012). E-J. Chem. 9, 772-779.

Rother, G., Worzala, H. \& Bentrup, U. (1997). Z. Kristallogr. New Cryst. Struct. 212, 199.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o725 [doi:10.1107/S1600536814012100]
trans-2,5-Dimethylpiperazine-1,4-diium dinitrate

Sofian Gatfaoui, Thierry Roisnel, Hassouna Dhaouadi and Houda Marouani

S1. Comment

Piperazine and its derivatives are widely used due to their interesting biological and pharmacology proprieties (Conrado et al., 2008). In this work, we report the preparation and the structural investigation of a new organic nitrate, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2} \cdot\left(\mathrm{NO}_{3}\right)_{2}$ (I). The asymmetric unit of (I) is composed of a half trans-2,5-dimeyhylpipeazine-1,4-dium cations and one nitrate anion (Figure 1). In the structure, the cations are connected to the anions through bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{O})$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating a corrugated layers parallel to the (001) plane (Fig. 2).
Interatomic bond lengths and angles of the nitrate anions spread respectively within the ranges [1.2398 (13)-1.2706 (13) \AA] and [118.65(10)-121.73(10) ${ }^{\circ}$. These geometrical features have also been noticed in other crystal structures (Marouani et al., 2012; Kefi et al., 2013; Gatfaoui et al., 2013, 2014a,b). It is worth noting that the distance N1-O1 is significantly longer than the $\mathrm{N} 1-\mathrm{O} 2$ and $\mathrm{N} 1-\mathrm{O} 3$ distances because O 1 is applied in three hydrogen bonds (table1) while O 2 and O 3 are applied in only one hydrogen bond. Inside such a structure, the complete organic entity is generated by inversion symmetry located at $(0,0,0)$ and $(0,1 / 2,1 / 2)$. So it is built up by only the half of the cation. Examination of the organic cations shows that the bond distances and angles show no significant difference from those obtained in other complex involving the same organic groups (Rother et al., 1997). The diprotonated piperazine ring adopts a chair conformation, with the methyl groups occupying an equatorial position, with puckering parameters: $\mathrm{Q}=0.6083 \AA, \theta=90$ ${ }^{\circ}$ and $\varphi=166^{\circ}$ (Cremer \& Pople, 1975).
The established H-bonds of types $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}(\mathrm{O})$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ involve oxygen atoms of the nitrate anions as acceptors, and protonated nitrogen atoms and methine groups of the trans-2,5-dimethylpiperazine-1,4-diium as donors.

S2. Experimental

An aqueous solution containing 2 mmol of HNO_{3} in 10 ml of water was added to 1 mmol of trans-2,5-dimethylpiperazine in 20 ml of water. The obtained solution was stirred for 1 h , filtered and then left to stand at room temperature. Colorless single crystals of the title compound were obtained after some days.

S3. Refinement

All H atoms were located in a difference map. Nevertheless, they were geometrically placed and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ (methylene), or $0.96 \AA$ (methyl), or $0.98 \AA($ methine $), \mathrm{N}-\mathrm{H}=0.90 \AA\left(\mathrm{NH}_{2}\right)$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}$ or N$)$.

Figure 1
An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. Symmetry code: i: -$x,-y,-z$.

Figure 2
Projection of (I) along the a axis. The H -atoms not involved in H -bonding are omitted.
trans-2,5-Dimethylpiperazine-1,4-diium dinitrate

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{NO}_{3}^{-}$
$M_{r}=240.23$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=7.0357$ (8) \AA
$b=10.0277(10) \AA$
$c=8.3112(8) \AA$
$\beta=116.149(8)^{\circ}$
$V=526.36(9) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII
diffractometer
Graphite monochromator
CCD rotation images, thin slices scans
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\min }=0.827, T_{\text {max }}=0.970$
4126 measured reflections
$F(000)=256$
$D_{\mathrm{x}}=1.516 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2153 reflections
$\theta=3.4-27.4^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Prism, colourless
$0.58 \times 0.46 \times 0.23 \mathrm{~mm}$

1195 independent reflections
1059 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-8 \rightarrow 9$
$k=-9 \rightarrow 12$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.11$
1195 reflections
74 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0438 P)^{2}+0.1423 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.30$ e \AA^{-3}
$\Delta \rho_{\min }=-0.23$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{\prime} U_{\text {eq }}$
N1	$0.20352(15)$	$-0.09103(10)$	$-0.37280(12)$	$0.0173(2)$
O1	$0.12714(14)$	$-0.13760(9)$	$-0.27150(11)$	$0.0218(2)$
O2	$0.24377(15)$	$-0.16754(10)$	$-0.47090(11)$	$0.0255(2)$
O3	$0.23709(16)$	$0.03059(9)$	$-0.36962(13)$	$0.0312(3)$
N2	$-0.02504(15)$	$0.08866(10)$	$-0.14298(12)$	$0.0169(2)$
H2A	-0.0683	0.1671	-0.2001	0.020^{*}
H2B	0.0282	0.0397	-0.2044	0.020^{*}
C1	$0.14685(18)$	$0.11399(12)$	$0.04232(15)$	$0.0165(3)$
H1	0.0915	0.1730	0.1057	0.020^{*}
C2	$0.21154(17)$	$-0.01747(12)$	$0.14274(15)$	$0.0176(3)$
H2C	0.2778	-0.0736	0.0869	0.021^{*}
H2D	0.3146	-0.0007	0.2653	0.021^{*}
C3	$0.33291(19)$	$0.18189(13)$	$0.03060(17)$	$0.0224(3)$
H3A	0.3930	0.1230	-0.0257	0.034^{*}
H3B	0.4381	0.2036	0.1490	0.034^{*}
H3C	0.2854	0.2621	-0.0389	0.034^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0184(5)$	$0.0158(5)$	$0.0155(5)$	$0.0005(4)$	$0.0054(4)$	$0.0005(4)$
O1	$0.0288(5)$	$0.0212(5)$	$0.0202(4)$	$-0.0019(3)$	$0.0153(4)$	$-0.0007(3)$
O2	$0.0331(5)$	$0.0274(5)$	$0.0203(4)$	$0.0033(4)$	$0.0158(4)$	$-0.0025(4)$
O3	$0.0356(5)$	$0.0134(5)$	$0.0400(6)$	$-0.0040(4)$	$0.0125(4)$	$0.0023(4)$
N2	$0.0199(5)$	$0.0162(5)$	$0.0150(5)$	$0.0030(4)$	$0.0081(4)$	$0.0023(4)$

C1	$0.0185(5)$	$0.0144(6)$	$0.0161(5)$	$0.0018(4)$	$0.0071(4)$	$-0.0010(4)$
C2	$0.0166(5)$	$0.0168(6)$	$0.0178(5)$	$0.0020(4)$	$0.0062(4)$	$0.0016(4)$
C3	$0.0207(6)$	$0.0178(6)$	$0.0287(6)$	$0.0003(5)$	$0.0112(5)$	$0.0009(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-O2	1.2398 (13)	C1-C2	1.5188 (17)
N1-O3	1.2403 (14)	C1-H1	0.9800
N1-O1	1.2706 (13)	$\mathrm{C} 2-\mathrm{N} 2{ }^{\text {i }}$	1.4945 (15)
$\mathrm{N} 2-\mathrm{C} 2{ }^{\text {i }}$	1.4945 (15)	C2-H2C	0.9700
N2-C1	1.5024 (14)	C2-H2D	0.9700
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	0.9000	C3-H3A	0.9600
N2-H2B	0.9000	С3-H3B	0.9600
C1-C3	1.5163 (17)	C3-H3C	0.9600
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 3$	121.73 (10)	C2-C1-H1	108.8
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	119.62 (10)	$\mathrm{N} 2{ }^{\text {i }}$ - $22-\mathrm{C} 1$	111.39 (9)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 1$	118.65 (10)	$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.4
$\mathrm{C} 2{ }^{\text {i }}-\mathrm{N} 2-\mathrm{C} 1$	112.95 (9)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.4
C 2 - $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	109.0	$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	109.4
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	109.0	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	109.4
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.0	$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.0
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.0	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
H2A-N2-H2B	107.8	C1-C3-H3B	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 3$	109.74 (9)	H3A-C3-H3B	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	109.11 (9)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C3-C1-C2	111.53 (10)	H3A-C3-H3C	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{H} 1$	108.8	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C3-C1-H1	108.8		

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.90	1.99	$2.8471(14)$	158
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots 2^{\mathrm{iii}}$	0.90	2.45	$2.9899(13)$	119
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 1$	0.90	2.07	$2.9057(13)$	153
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{O} 3$	0.90	2.42	$3.2172(14)$	149
$\mathrm{C} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{i}}$	0.98	2.50	$3.2614(14)$	134

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x, y+1 / 2,-z-1 / 2$; (iii) $-x,-y,-z-1$.

