organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-2-[1-(2-hy­dr­oxy­naphthalen-1-yl)ethyl­­idene]hydrazinecarbo­thio­amide

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 23 May 2014; accepted 23 May 2014; online 31 May 2014)

In the title compound, C15H17N3OS, the dihedral angle between the mean planes of the 2-hy­droxy­napthyl ring system and the hydrazinecarbo­thio­amide group is 73.7 (3)°. In the crystal, weak O—H⋯S and C—H⋯O inter­actions and ππ stacking inter­actions involving one of the hy­droxy­napthyl rings with a centroid–centroid distance of 3.6648 (14) Å are observed, forming infinite chains along [010]. In addition, N—H⋯S inter­actions occur.

Related literature

For the biological activity of thio­semicarbazones, see: Chellan et al. (2010[Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520-3528.]). For binding motifs of thio­semicarbazones, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For thio­semicarbazones as ligands in catalysis, see: Xie et al. (2010[Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641-1647.]). For related structures, see: Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.], 2013a[Anderson, B. J., Freedman, M. B., Millikan, S. P. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1315.],b[Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013b). Acta Cryst. E69, o11.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17N3OS

  • Mr = 287.38

  • Triclinic, [P \overline 1]

  • a = 8.8988 (7) Å

  • b = 9.2993 (8) Å

  • c = 9.4821 (5) Å

  • α = 92.525 (6)°

  • β = 113.034 (7)°

  • γ = 93.990 (7)°

  • V = 718.18 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 173 K

  • 0.42 × 0.22 × 0.14 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.]) Tmin = 0.429, Tmax = 1.000

  • 4327 measured reflections

  • 2710 independent reflections

  • 2365 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.06

  • 2710 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.84 2.40 3.2349 (17) 171
C14—H14A⋯O1ii 0.99 2.49 3.474 (4) 171
N2—H2⋯S1iii 0.88 2.79 3.548 (2) 145
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiosemicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan et al., 2010), interesting binding motifs (Lobana et al., 2009), and their use as ligands in catalysis (Xie et al., 2010). We have previously reported the structure of three similar novel thiosemicarbazones (Anderson et al., 2012; Anderson et al., 2013a; Anderson et al., 2013b). Here, we report the synthesis and crystal structure of a new novel thiosemicarbazone ligand starting with 2'-hydroxy-1'-acetonaphthone and 4-ethyl-thio-semicarbazide, C15H17N3OS.

In the title compound, the dihedral angle between the mean planes of the 2-hydroxynapthyl ring and the hydrazinecarbothioamide group (N3/N2/C1/S1/N1) is 73.7 (3)°. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, weak O1—H1···S1 and C14—H14A···O1 intermolecular interactions and ππ stacking interactions involving one of the hydroxynapthyl rings are observed forming infinite polymeric chains along [010] (Cg2—Cg2 = 3.6648 (14)Å; 2-x, 1-y, -z; Cg2 = C7—C12). In addition, there are N-H···S interactions stabilizing the crystal structure.

Related literature top

For the biological activity of thiosemicarbazones, see: Chellan et al. (2010). For binding motifs of thiosemicarbazones, see: Lobana et al. (2009). For thiosemicarbazones as ligands in catalysis, see: Xie et al. (2010). For related structures, see: Anderson et al. (2012, 2013a,b). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A 25 mL round bottom flask was charged with 0.2052 g (1.102 mmol) 2'-hydroxy-1'-acetonaphthone, and 0.1341 g (1.125 mmol) 4-ethyl-thio-semicarbazide and in 5 mL of 1:1 ratio H2O to ETOH. The resulting slurry was refluxed for 96 hours (Fig. 3). After reflux the opaque solution was transferred to a separatory funnel to which dichloromethane and water were added. The organic layer was separated and the aqueous layer was extracted twice with 5 mL DCM. The organic layers were combined, washed with brine and dried with magnesium sulfate, and the solvent was removed in vacuo to yield a colorless oil. The oil was the dissolved in minimal 343° K acetonitrile and left to slowly cool to 273° K, after 24 days colorless crystals were observed. m.p. 444–446 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group. Idealised tetrahedral OH refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of C15H17N3OS, showing the labeling scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for the title compound viewed along the a axis. Dashed lines indicate weak O1—H1···S1 and C14—H14A···O1 intermolecular interactions forming infinite polymeric chains along [010].
[Figure 3] Fig. 3. Reaction scheme.
N-Ethyl-2-[1-(2-hydroxynaphthalen-1-yl)ethylidene]hydrazinecarbothioamide top
Crystal data top
C15H17N3OSZ = 2
Mr = 287.38F(000) = 304
Triclinic, P1Dx = 1.329 Mg m3
a = 8.8988 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.2993 (8) ÅCell parameters from 1994 reflections
c = 9.4821 (5) Åθ = 4.8–71.3°
α = 92.525 (6)°µ = 1.99 mm1
β = 113.034 (7)°T = 173 K
γ = 93.990 (7)°Irregular, colourless
V = 718.18 (10) Å30.42 × 0.22 × 0.14 mm
Data collection top
Agilent Eos Gemini
diffractometer
2710 independent reflections
Radiation source: Enhance (Cu) X-ray Source2365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 4.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1011
Tmin = 0.429, Tmax = 1.000l = 119
4327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0898P)2 + 0.2589P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2710 reflectionsΔρmax = 0.41 e Å3
184 parametersΔρmin = 0.41 e Å3
0 restraints
Crystal data top
C15H17N3OSγ = 93.990 (7)°
Mr = 287.38V = 718.18 (10) Å3
Triclinic, P1Z = 2
a = 8.8988 (7) ÅCu Kα radiation
b = 9.2993 (8) ŵ = 1.99 mm1
c = 9.4821 (5) ÅT = 173 K
α = 92.525 (6)°0.42 × 0.22 × 0.14 mm
β = 113.034 (7)°
Data collection top
Agilent Eos Gemini
diffractometer
2710 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2365 reflections with I > 2σ(I)
Tmin = 0.429, Tmax = 1.000Rint = 0.032
4327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
2710 reflectionsΔρmin = 0.41 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53047 (7)0.69555 (5)0.11487 (6)0.0286 (2)
O10.6330 (2)0.03677 (17)0.2160 (2)0.0360 (4)
H10.60560.04950.17930.054*
N10.6310 (3)0.6503 (2)0.4127 (2)0.0342 (5)
H1A0.68240.59800.48930.041*
N20.6777 (2)0.47722 (19)0.2599 (2)0.0242 (4)
H20.67330.44300.17020.029*
N30.7469 (2)0.40209 (19)0.3892 (2)0.0234 (4)
C10.6168 (3)0.6042 (2)0.2735 (2)0.0226 (5)
C20.8136 (3)0.2868 (2)0.3759 (3)0.0230 (5)
C30.8262 (3)0.2283 (2)0.2325 (2)0.0219 (4)
C40.7379 (3)0.1000 (2)0.1585 (3)0.0251 (5)
C50.7515 (3)0.0388 (2)0.0254 (3)0.0284 (5)
H50.68600.04750.02670.034*
C60.8583 (3)0.1036 (2)0.0279 (3)0.0278 (5)
H60.86560.06250.11820.033*
C70.9594 (3)0.2317 (2)0.0491 (3)0.0249 (5)
C81.0824 (3)0.2928 (3)0.0032 (3)0.0294 (5)
H81.09480.24990.08390.035*
C91.1834 (3)0.4128 (3)0.0832 (3)0.0319 (5)
H91.26670.45160.05270.038*
C101.1634 (3)0.4782 (2)0.2102 (3)0.0298 (5)
H101.23230.56230.26410.036*
C111.0455 (3)0.4222 (2)0.2576 (3)0.0245 (5)
H111.03320.46840.34330.029*
C120.9418 (2)0.2955 (2)0.1797 (2)0.0216 (4)
C130.8917 (3)0.2093 (3)0.5182 (3)0.0344 (6)
H13A1.01060.21520.54730.052*
H13B0.84720.10760.49850.052*
H13C0.86860.25430.60210.052*
C140.5673 (4)0.7823 (4)0.4484 (3)0.0555 (9)
H14A0.59430.86130.39310.067*
H14B0.44620.76590.40920.067*
C150.6293 (6)0.8273 (5)0.6067 (4)0.0845 (15)
H15A0.57340.90990.62240.127*
H15B0.74730.85580.64380.127*
H15C0.61020.74750.66360.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0383 (4)0.0169 (3)0.0243 (3)0.0057 (2)0.0052 (2)0.0014 (2)
O10.0362 (9)0.0208 (8)0.0520 (11)0.0063 (7)0.0208 (8)0.0064 (7)
N10.0440 (12)0.0314 (11)0.0233 (10)0.0204 (9)0.0066 (9)0.0003 (8)
N20.0329 (10)0.0193 (9)0.0190 (9)0.0090 (7)0.0078 (8)0.0005 (7)
N30.0277 (9)0.0196 (9)0.0206 (9)0.0026 (7)0.0071 (7)0.0008 (7)
C10.0210 (10)0.0188 (10)0.0236 (11)0.0022 (8)0.0044 (8)0.0017 (8)
C20.0221 (10)0.0173 (10)0.0273 (11)0.0010 (8)0.0075 (9)0.0023 (8)
C30.0218 (10)0.0158 (9)0.0249 (11)0.0050 (8)0.0051 (8)0.0021 (8)
C40.0215 (10)0.0164 (10)0.0331 (12)0.0054 (8)0.0054 (9)0.0015 (8)
C50.0245 (11)0.0184 (10)0.0339 (12)0.0052 (8)0.0026 (9)0.0042 (9)
C60.0281 (11)0.0261 (11)0.0238 (11)0.0115 (9)0.0037 (9)0.0042 (9)
C70.0248 (11)0.0235 (10)0.0240 (11)0.0100 (9)0.0057 (9)0.0048 (8)
C80.0339 (12)0.0310 (12)0.0253 (11)0.0120 (10)0.0119 (10)0.0072 (9)
C90.0314 (12)0.0323 (12)0.0357 (13)0.0065 (10)0.0156 (10)0.0124 (10)
C100.0274 (11)0.0242 (11)0.0339 (12)0.0005 (9)0.0078 (10)0.0052 (9)
C110.0264 (11)0.0194 (10)0.0247 (11)0.0040 (8)0.0067 (9)0.0019 (8)
C120.0205 (10)0.0176 (10)0.0222 (10)0.0062 (8)0.0029 (8)0.0039 (8)
C130.0469 (14)0.0273 (12)0.0293 (13)0.0120 (11)0.0135 (11)0.0078 (10)
C140.072 (2)0.0528 (17)0.0360 (15)0.0411 (16)0.0101 (14)0.0068 (13)
C150.107 (3)0.074 (2)0.051 (2)0.062 (2)0.002 (2)0.0201 (18)
Geometric parameters (Å, º) top
S1—C11.695 (2)C7—C81.420 (3)
O1—H10.8400C7—C121.418 (3)
O1—C41.366 (3)C8—H80.9500
N1—H1A0.8800C8—C91.372 (4)
N1—C11.324 (3)C9—H90.9500
N1—C141.468 (3)C9—C101.404 (4)
N2—H20.8800C10—H100.9500
N2—N31.384 (3)C10—C111.374 (3)
N2—C11.355 (3)C11—H110.9500
N3—C21.286 (3)C11—C121.423 (3)
C2—C31.491 (3)C13—H13A0.9800
C2—C131.499 (3)C13—H13B0.9800
C3—C41.378 (3)C13—H13C0.9800
C3—C121.428 (3)C14—H14A0.9900
C4—C51.413 (3)C14—H14B0.9900
C5—H50.9500C14—C151.413 (4)
C5—C61.358 (3)C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C6—C71.422 (3)C15—H15C0.9800
C4—O1—H1109.5C9—C8—H8119.6
C1—N1—H1A117.7C8—C9—H9120.1
C1—N1—C14124.6 (2)C8—C9—C10119.8 (2)
C14—N1—H1A117.7C10—C9—H9120.1
N3—N2—H2120.5C9—C10—H10119.5
C1—N2—H2120.5C11—C10—C9120.9 (2)
C1—N2—N3118.96 (18)C11—C10—H10119.5
C2—N3—N2117.91 (18)C10—C11—H11119.7
N1—C1—S1123.94 (17)C10—C11—C12120.6 (2)
N1—C1—N2117.0 (2)C12—C11—H11119.7
N2—C1—S1119.01 (16)C7—C12—C3119.48 (19)
N3—C2—C3125.3 (2)C7—C12—C11118.3 (2)
N3—C2—C13117.1 (2)C11—C12—C3122.1 (2)
C3—C2—C13117.53 (19)C2—C13—H13A109.5
C4—C3—C2119.75 (19)C2—C13—H13B109.5
C4—C3—C12119.3 (2)C2—C13—H13C109.5
C12—C3—C2120.65 (18)H13A—C13—H13B109.5
O1—C4—C3117.4 (2)H13A—C13—H13C109.5
O1—C4—C5121.37 (19)H13B—C13—H13C109.5
C3—C4—C5121.2 (2)N1—C14—H14A108.7
C4—C5—H5120.1N1—C14—H14B108.7
C6—C5—C4119.9 (2)H14A—C14—H14B107.6
C6—C5—H5120.1C15—C14—N1114.2 (3)
C5—C6—H6119.4C15—C14—H14A108.7
C5—C6—C7121.3 (2)C15—C14—H14B108.7
C7—C6—H6119.4C14—C15—H15A109.5
C8—C7—C6121.8 (2)C14—C15—H15B109.5
C12—C7—C6118.7 (2)C14—C15—H15C109.5
C12—C7—C8119.4 (2)H15A—C15—H15B109.5
C7—C8—H8119.6H15A—C15—H15C109.5
C9—C8—C7120.8 (2)H15B—C15—H15C109.5
O1—C4—C5—C6179.3 (2)C5—C6—C7—C122.9 (3)
N2—N3—C2—C31.4 (3)C6—C7—C8—C9177.1 (2)
N2—N3—C2—C13178.41 (19)C6—C7—C12—C31.3 (3)
N3—N2—C1—S1179.44 (15)C6—C7—C12—C11178.85 (18)
N3—N2—C1—N11.5 (3)C7—C8—C9—C101.3 (3)
N3—C2—C3—C4111.9 (2)C8—C7—C12—C3175.52 (19)
N3—C2—C3—C1274.7 (3)C8—C7—C12—C112.0 (3)
C1—N1—C14—C15165.9 (3)C8—C9—C10—C111.2 (4)
C1—N2—N3—C2175.50 (18)C9—C10—C11—C120.6 (3)
C2—C3—C4—O14.3 (3)C10—C11—C12—C3175.3 (2)
C2—C3—C4—C5177.72 (19)C10—C11—C12—C72.1 (3)
C2—C3—C12—C7175.56 (18)C12—C3—C4—O1177.75 (18)
C2—C3—C12—C111.9 (3)C12—C3—C4—C54.2 (3)
C3—C4—C5—C62.8 (3)C12—C7—C8—C90.3 (3)
C4—C3—C12—C72.1 (3)C13—C2—C3—C471.2 (3)
C4—C3—C12—C11175.27 (19)C13—C2—C3—C12102.2 (2)
C4—C5—C6—C70.9 (3)C14—N1—C1—S13.2 (4)
C5—C6—C7—C8173.9 (2)C14—N1—C1—N2177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.842.403.2349 (17)171
C14—H14A···O1ii0.992.493.474 (4)171
N2—H2···S1iii0.882.793.548 (2)145
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.842.403.2349 (17)170.8
C14—H14A···O1ii0.992.493.474 (4)170.9
N2—H2···S1iii0.882.793.548 (2)144.8
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+1, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, B. J., Freedman, M. B., Millikan, S. P. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1315.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013b). Acta Cryst. E69, o11.  CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationChellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds