

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-Allyl-9H-fluoren-9-ol

Kyle S. Knight* and Harvey B. Wood

Department of Chemistry, The University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA Correspondence e-mail: kyle-knight@utc.edu

Received 29 April 2014; accepted 6 May 2014

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.105; data-to-parameter ratio = 13.8.

The asymmetric unit of the title compound, C₁₆H₁₄O, contains two independent molecules differing in the orientations of the allyl groups; the corresponding $O-C-C(H_2)-C(H)$ torsion angles are -61.01 (13) and $-177.43 (10)^{\circ}$. In the crystal, O-H···O hydrogen bonds link four molecules into a centrosymmetric tetramer, in which each hydroxy group acts as a donor and an acceptor of hydrogen bonds.

Related literature

For the use of the title compound in the synthesis of spirocyclic ethers via alkene metathesis, see: Brahma et al. (2007).

Experimental

Crystal data C16H14O

 $M_r = 222.27$

Triclinic, $P\overline{1}$ a = 9.3789 (15) Å b = 12.2809 (18) Å c = 12.936 (2) Å $\alpha = 63.995$ (4)° $\beta = 68.803$ (4)° $\gamma = 69.887$ (4)°	$V = 1217.6 (3) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 200 K $0.8 \times 0.7 \times 0.51 \text{ mm}$		
Data collection			
Bruker APEXII CCD diffractometer	4262 independent reflections 3749 reflections with $I > 2\sigma(I)$		
23092 measured reflections	$R_{\text{int}} = 0.031$		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.037$	309 parameters		
$wR(F^2) = 0.105$	H-atom parameters constrained		
S = 1.02	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$		
4262 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$		

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O2 ⁱ	0.84	1.95	2.7709 (13)	165
$O2-H2A\cdots O1$	0.84	1.93	2.7558 (15)	170

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements are made to the National Science Foundation MRI Program (CHE-0951711) and the Grote Chemistry Fund at the University of Tennessee at Chattanooga for their generous support of our work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5454).

References

Brahma, S., Maity, S. & Ray, J. K. (2007). J. Heterocycl. Chem. 44, 29-34.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o677 [doi:10.1107/S1600536814010290]

9-Allyl-9H-fluoren-9-ol

Kyle S. Knight and Harvey B. Wood

S1. Comment

The homoallylic alcohol, 9-allylfluoren-9-ol, crystallizes as two symmetrically distinct molecules. The molecules are linked by a square shaped hydrogen bonding network in which symmetrically equivalent and inequivalent molecules occupy alternating positions in the corners, and each hydroxyl group acts as a donor and an acceptor to adjacent molecules. In the crystal, there is t-stacking between alternating rows of symmetrically inequivalent molecules. In one molecule the O—C—C-alkene bond, O2—C20—C19—C18, is anti with a torsion angle of -177.43 (10)° while in the other symmetrically inequivalent structure, the analogous torsion, O1—C5—C6—C7, is *gauche* and has a torsion angle of -61.01 (13)°.

S2. Experimental

The title compound was prepared by addition of a 1.0 M solution of allylmagnesium chloride (0.012 mol) in tetrahydrofuran to a solution of fluorenone (0.010 mol) at 0°C. The reaction was quenched by the addition of 1.0 M HCl, extracted into diethyl ether and concentrated on a rotary evaporator. Suitable crystals were obtained by recrystallization from methanol.

S3. Refinement

All H atoms bonded to C were positioned geometrically, with bond distances of 0.95 Å for C(sp2)–H and 0.95 Å for methylene, and were refined as riding, with $U_{iso}(H)=1.2 U_{eq}(C)$. H atoms bonded to O were positioned geometrically with an O–H distance of 0.84 Å, and refined as rotating, with $U_{iso}(H)=1.5 U_{eq}(O)$.

Figure 1

Two independent molecules of the title compound showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. Dashed line denotes hydrogen bond.

9-Allyl-9H-fluoren-9-ol

Crystal data	
$C_{16}H_{14}O$ $M_r = 222.27$ Triclinic, P1 a = 9.3789 (15) Å b = 12.2809 (18) Å c = 12.936 (2) Å $a = 63.995 (4)^{\circ}$ $\beta = 68.803 (4)^{\circ}$ $\gamma = 69.887 (4)^{\circ}$ $V = 1217.6 (3) \text{ Å}^{3}$	Z = 4 F(000) = 472 $D_x = 1.212 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9980 reflections $\theta = 2.4-25.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 200 K Prism, yellow $0.8 \times 0.7 \times 0.51 \text{ mm}$
Data collectionBruker APEXII CCD diffractometerGraphite monochromator φ and ω scans23092 measured reflections4262 independent reflections	3749 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -11 \rightarrow 11$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 1.02 4262 reflections 309 parameters	0 restraints H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.063P)^2 + 0.2188P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.59676 (10)	0.12837 (7)	0.49408 (7)	0.0332 (2)	
H1	0.6088	0.0525	0.5364	0.050*	
02	0.38219 (11)	0.12557 (7)	0.39598 (7)	0.0366 (2)	
H2A	0.4437	0.1363	0.4227	0.055*	
C1	0.23321 (17)	0.17419 (13)	0.88455 (12)	0.0457 (3)	
H1A	0.1578	0.1700	0.9581	0.055*	
C2	0.18390 (16)	0.20753 (13)	0.78424 (13)	0.0443 (3)	
H2	0.0751	0.2250	0.7896	0.053*	
C3	0.29179 (15)	0.21578 (12)	0.67528 (12)	0.0381 (3)	
H3	0.2577	0.2393	0.6061	0.046*	
C4	0.44978 (14)	0.18905 (11)	0.66955 (10)	0.0306 (3)	
C5	0.58817 (13)	0.19806 (10)	0.56139 (10)	0.0294 (3)	
C6	0.57498 (15)	0.33479 (11)	0.47747 (11)	0.0354 (3)	
H6A	0.4780	0.3626	0.4502	0.042*	
H6B	0.5634	0.3853	0.5234	0.042*	
C7	0.70892 (16)	0.36099 (12)	0.37113 (12)	0.0414 (3)	
H7	0.7415	0.3126	0.3227	0.050*	
C8	0.78483 (19)	0.44707 (15)	0.34030 (16)	0.0612 (4)	
H8A	0.7550	0.4969	0.3870	0.073*	
H8B	0.8696	0.4595	0.2713	0.073*	
C9	0.93625 (17)	0.04974 (13)	0.75621 (14)	0.0499 (4)	
H9	1.0097	0.0157	0.8033	0.060*	
C10	0.77762 (17)	0.07549 (12)	0.80950 (12)	0.0414 (3)	
H10	0.7417	0.0598	0.8924	0.050*	
C11	0.67245 (14)	0.12456 (10)	0.73951 (10)	0.0314 (3)	
C12	0.49977 (14)	0.15303 (10)	0.77147 (10)	0.0315 (3)	
C13	0.39132 (16)	0.14676 (12)	0.87949 (11)	0.0408 (3)	
H13	0.4248	0.1241	0.9487	0.049*	
C14	0.72606 (14)	0.14784 (10)	0.61755 (10)	0.0300 (3)	
C15	0.88448 (15)	0.12218 (12)	0.56494 (12)	0.0399 (3)	
H15	0.9209	0.1381	0.4820	0.048*	
C16	0.98985 (17)	0.07259 (14)	0.63558 (15)	0.0503 (4)	
H16	1.0993	0.0543	0.6008	0.060*	
C17	0.09971 (19)	0.33292 (15)	0.09582 (15)	0.0563 (4)	
H17A	0.0054	0.3173	0.1549	0.068*	
H17B	0.0959	0.3872	0.0168	0.068*	
C18	0.23369 (16)	0.28004 (12)	0.12297 (11)	0.0387 (3)	
H18	0.3247	0.2985	0.0609	0.046*	
C19	0.25818 (16)	0.19311 (12)	0.24235 (11)	0.0365 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19A	0.2999	0.1078	0.2411	0.044*
H19B	0.1554	0.1947	0.3013	0.044*
C20	0.37019 (14)	0.22274 (10)	0.28309 (10)	0.0304 (3)
C21	0.52751 (14)	0.23246 (11)	0.19311 (10)	0.0319 (3)
C22	0.55426 (14)	0.35111 (11)	0.15307 (10)	0.0328 (3)
C23	0.68727 (16)	0.38288 (14)	0.06561 (12)	0.0444 (3)
H23	0.7056	0.4636	0.0381	0.053*
C24	0.79322 (16)	0.29496 (16)	0.01894 (13)	0.0505 (4)
H24	0.8843	0.3160	-0.0418	0.061*
C25	0.76786 (16)	0.17710 (15)	0.05973 (13)	0.0502 (4)
H25	0.8425	0.1177	0.0274	0.060*
C26	0.63487 (15)	0.14423 (13)	0.14729 (12)	0.0420 (3)
H26	0.6178	0.0630	0.1752	0.050*
C27	0.42222 (14)	0.42412 (11)	0.21722 (10)	0.0316 (3)
C28	0.39539 (17)	0.54383 (12)	0.21355 (12)	0.0433 (3)
H28	0.4697	0.5938	0.1631	0.052*
C29	0.25850 (19)	0.58910 (13)	0.28462 (14)	0.0511 (4)
H29	0.2392	0.6707	0.2835	0.061*
C30	0.14923 (18)	0.51751 (13)	0.35731 (13)	0.0499 (4)
H30	0.0546	0.5512	0.4040	0.060*
C31	0.17609 (15)	0.39693 (12)	0.36288 (11)	0.0398 (3)
H31	0.1015	0.3473	0.4138	0.048*
C32	0.31348 (14)	0.35039 (11)	0.29287 (10)	0.0298 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0450 (5)	0.0288 (5)	0.0306 (4)	-0.0107 (4)	-0.0147 (4)	-0.0086 (3)
O2	0.0516 (5)	0.0267 (4)	0.0355 (5)	-0.0131 (4)	-0.0219 (4)	-0.0025 (4)
C1	0.0469 (8)	0.0436 (8)	0.0409 (7)	-0.0099 (6)	0.0003 (6)	-0.0192 (6)
C2	0.0339 (7)	0.0416 (8)	0.0520 (8)	-0.0060 (6)	-0.0070 (6)	-0.0166 (6)
C3	0.0372 (7)	0.0368 (7)	0.0407 (7)	-0.0071 (5)	-0.0142 (5)	-0.0115 (6)
C4	0.0360 (6)	0.0244 (6)	0.0333 (6)	-0.0073 (5)	-0.0117 (5)	-0.0092 (5)
C5	0.0341 (6)	0.0269 (6)	0.0303 (6)	-0.0078 (5)	-0.0111 (5)	-0.0096 (5)
C6	0.0402 (7)	0.0288 (6)	0.0373 (6)	-0.0076 (5)	-0.0154 (5)	-0.0073 (5)
C7	0.0493 (8)	0.0347 (7)	0.0370 (7)	-0.0125 (6)	-0.0147 (6)	-0.0046 (5)
C8	0.0552 (9)	0.0474 (9)	0.0724 (11)	-0.0217 (7)	-0.0046 (8)	-0.0154 (8)
C9	0.0513 (9)	0.0420 (8)	0.0645 (9)	-0.0094 (6)	-0.0372 (7)	-0.0088 (7)
C10	0.0557 (8)	0.0347 (7)	0.0426 (7)	-0.0143 (6)	-0.0262 (6)	-0.0072 (6)
C11	0.0421 (7)	0.0223 (6)	0.0360 (6)	-0.0098 (5)	-0.0166 (5)	-0.0085 (5)
C12	0.0408 (7)	0.0237 (6)	0.0334 (6)	-0.0084(5)	-0.0123 (5)	-0.0100 (5)
C13	0.0537 (8)	0.0369 (7)	0.0339 (6)	-0.0102 (6)	-0.0109 (6)	-0.0145 (5)
C14	0.0359 (6)	0.0217 (6)	0.0355 (6)	-0.0075 (5)	-0.0139 (5)	-0.0081 (5)
C15	0.0378 (7)	0.0366 (7)	0.0444 (7)	-0.0091 (5)	-0.0110 (6)	-0.0124 (6)
C16	0.0353 (7)	0.0458 (8)	0.0699 (10)	-0.0060 (6)	-0.0208 (7)	-0.0169 (7)
C17	0.0571 (9)	0.0587 (10)	0.0587 (9)	-0.0055 (7)	-0.0307 (8)	-0.0186 (8)
C18	0.0449 (7)	0.0384 (7)	0.0396 (7)	-0.0118 (6)	-0.0171 (6)	-0.0129 (6)
C19	0.0447 (7)	0.0305 (7)	0.0411 (7)	-0.0135 (5)	-0.0167 (6)	-0.0101 (5)

C20	0.0377 (6)	0.0237 (6)	0.0319 (6)	-0.0080(5)	-0.0146 (5)	-0.0061 (5)
C21	0.0348 (6)	0.0307 (6)	0.0341 (6)	-0.0043 (5)	-0.0171 (5)	-0.0106 (5)
C22	0.0349 (6)	0.0339 (7)	0.0314 (6)	-0.0093 (5)	-0.0145 (5)	-0.0071 (5)
C23	0.0425 (7)	0.0495 (8)	0.0398 (7)	-0.0178 (6)	-0.0121 (6)	-0.0075 (6)
C24	0.0342 (7)	0.0734 (11)	0.0411 (7)	-0.0111 (7)	-0.0078 (6)	-0.0200 (7)
C25	0.0389 (7)	0.0648 (10)	0.0501 (8)	0.0056 (7)	-0.0177 (6)	-0.0311 (8)
C26	0.0428 (7)	0.0400 (8)	0.0482 (8)	0.0004 (6)	-0.0197 (6)	-0.0207 (6)
C27	0.0396 (7)	0.0265 (6)	0.0317 (6)	-0.0088(5)	-0.0165 (5)	-0.0059 (5)
C28	0.0586 (9)	0.0285 (7)	0.0457 (7)	-0.0158 (6)	-0.0196 (7)	-0.0059 (6)
C29	0.0717 (10)	0.0281 (7)	0.0567 (9)	-0.0032 (7)	-0.0239 (8)	-0.0177 (6)
C30	0.0566 (9)	0.0389 (8)	0.0492 (8)	0.0020 (7)	-0.0125 (7)	-0.0214 (7)
C31	0.0406 (7)	0.0369 (7)	0.0391 (7)	-0.0075 (6)	-0.0099 (6)	-0.0122 (6)
C32	0.0364 (6)	0.0264 (6)	0.0295 (6)	-0.0076 (5)	-0.0149 (5)	-0.0070 (5)

Geometric parameters (Å, °)

01—H1	0.8400	C15—C16	1.3906 (19)
O1—C5	1.4326 (13)	C16—H16	0.9500
O2—H2A	0.8400	C17—H17A	0.9500
O2—C20	1.4380 (14)	C17—H17B	0.9500
C1—H1A	0.9500	C17—C18	1.297 (2)
C1—C2	1.380 (2)	C18—H18	0.9500
C1—C13	1.386 (2)	C18—C19	1.4898 (17)
С2—Н2	0.9500	C19—H19A	0.9900
С2—С3	1.3909 (19)	C19—H19B	0.9900
С3—Н3	0.9500	C19—C20	1.5314 (16)
C3—C4	1.3843 (17)	C20—C21	1.5178 (17)
C4—C5	1.5180 (16)	C20—C32	1.5193 (16)
C4—C12	1.3952 (16)	C21—C22	1.3965 (17)
С5—С6	1.5393 (16)	C21—C26	1.3859 (18)
C5—C14	1.5227 (16)	C22—C23	1.3841 (18)
С6—Н6А	0.9900	C22—C27	1.4736 (18)
C6—H6B	0.9900	С23—Н23	0.9500
C6—C7	1.4880 (18)	C23—C24	1.385 (2)
С7—Н7	0.9500	C24—H24	0.9500
C7—C8	1.314 (2)	C24—C25	1.381 (2)
C8—H8A	0.9500	C25—H25	0.9500
C8—H8B	0.9500	C25—C26	1.387 (2)
С9—Н9	0.9500	C26—H26	0.9500
C9—C10	1.384 (2)	C27—C28	1.3856 (18)
C9—C16	1.383 (2)	C27—C32	1.3978 (17)
C10—H10	0.9500	C28—H28	0.9500
C10-C11	1.3835 (17)	C28—C29	1.381 (2)
C11—C12	1.4729 (17)	C29—H29	0.9500
C11—C14	1.3977 (17)	C29—C30	1.380 (2)
C12—C13	1.3874 (17)	C30—H30	0.9500
C13—H13	0.9500	C30—C31	1.387 (2)
C14—C15	1.3801 (18)	C31—H31	0.9500

C15—H15	0.9500	C31—C32	1.3823 (18)
С5—01—Н1	109.5	C15—C16—H16	119.8
C20—O2—H2A	109.5	H17A—C17—H17B	120.0
C2—C1—H1A	119.6	C18—C17—H17A	120.0
C2—C1—C13	120.87 (12)	C18—C17—H17B	120.0
C13—C1—H1A	119.6	C17—C18—H18	117.0
C1—C2—H2	119.7	C17—C18—C19	126.10 (14)
C1—C2—C3	120.68 (13)	C19—C18—H18	117.0
C3—C2—H2	119.7	C18—C19—H19A	108.7
С2—С3—Н3	120.6	C18—C19—H19B	108.7
C4—C3—C2	118.72 (12)	C18—C19—C20	114.33 (10)
С4—С3—Н3	120.6	H19A—C19—H19B	107.6
C3—C4—C5	128.70 (11)	С20—С19—Н19А	108.7
C3—C4—C12	120.57 (11)	C20—C19—H19B	108.7
C12—C4—C5	110.67 (10)	02-C20-C19	105.00 (9)
01-C5-C4	113 94 (9)	02-C20-C21	113 20 (9)
01 - C5 - C6	107.01 (9)	02 - C20 - C32	111.62 (9)
01 - C5 - C14	112, 12, (9)	$C_{21} = C_{20} = C_{19}$	112.48 (10)
C4-C5-C6	108.96(10)	$C_{21} = C_{20} = C_{13}^{22}$	101.85 (9)
C4-C5-C14	101 68 (9)	C_{32} C_{20} C_{32} C_{19}	112.95(10)
C14-C5-C6	113 19 (9)	$C_{22} = C_{21} = C_{20}$	112.95(10) 110.55(10)
C5-C6-H6A	108.4	$C_{22} = C_{21} = C_{20}$	128.87(11)
C5-C6-H6B	108.4	C_{26} C_{21} C_{20}	120.07(11) 120.53(12)
H6A - C6 - H6B	107.4	$C_{20} = C_{21} = C_{22}$	120.55(12) 108.61(11)
C7-C6-C5	115 68 (10)	C_{23} C_{22} C_{27} C_{21}	100.01(11) 120.41(12)
C7 C6 H6A	108 /	$C_{23} = C_{22} = C_{21}$	120.41(12) 130.97(12)
C7 C6 H6B	108.4	$C_{23} = C_{22} = C_{27}$	120.6
$C_{1} = C_{1} = H_{1}$	118.1	$C_{22} = C_{23} = C_{24}$	120.0
C_{0} C_{7} C_{6}	110.1 123.87(14)	$C_{22} = C_{23} = C_{24}$	120.6
$C_8 = C_7 = U_7$	123.87 (14)	$C_{24} = C_{23} = H_{23}$	120.0
C_{0} C_{0} H_{0}	110.1	$C_{23} = C_{24} = C_{23}$	119.0 120.71(12)
C^{-}	120.0	$C_{25} = C_{24} = C_{25}$	120.71 (13)
C = C = C = C = C = C = C = C = C = C =	120.0	$C_{23} = C_{24} = H_{24}$	119.0
$H\delta A = C\delta = H\delta B$	120.0	$C_{24} = C_{25} = C_{26}$	119.5
C10 - C9 - H9	119.4	$C_{24} = C_{25} = C_{26}$	120.94 (13)
C16 - C9 - H9	119.4	C20-C25-H25	119.5
C16 - C9 - C10	121.18 (12)	$C_{21} = C_{26} = C_{25}$	118.53 (13)
C9—C10—H10	120.7	C21—C26—H26	120.7
C9—C10—C11	118.59 (13)	C25—C26—H26	120.7
C11—C10—H10	120.7	$C_{28} = C_{27} = C_{22}$	131.34 (12)
C10—C11—C12	130.85 (12)	$C_{28} = C_{27} = C_{32}$	120.40 (12)
C10—C11—C14	120.44 (12)	$C_{32} = C_{27} = C_{22}$	108.26 (11)
C14—C11—C12	108.59 (10)	С27—С28—Н28	120.6
C4—C12—C11	108.33 (10)	C29—C28—C27	118.71 (13)
C13—C12—C4	120.36 (12)	C29—C28—H28	120.6
C13—C12—C11	131.29 (11)	С28—С29—Н29	119.5
C1—C13—C12	118.78 (12)	C30—C29—C28	120.99 (13)
C1-C13-H13	120.6	С30—С29—Н29	119.5

supporting information

C12—C13—H13	120.6	С29—С30—Н30	119.6
C11—C14—C5	110.34 (10)	C29—C30—C31	120.71 (13)
C15—C14—C5	128.98 (11)	С31—С30—Н30	119.6
C15—C14—C11	120.66 (11)	С30—С31—Н31	120.6
C14—C15—H15	120.6	C32—C31—C30	118.71 (13)
C14—C15—C16	118.76 (13)	С32—С31—Н31	120.6
C16—C15—H15	120.6	C27—C32—C20	110.68 (10)
C9—C16—C15	120.38 (13)	C31—C32—C20	128.86 (11)
С9—С16—Н16	119.8	C31—C32—C27	120.46 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…O2 ⁱ	0.84	1.95	2.7709 (13)	165
O2—H2A…O1	0.84	1.93	2.7558 (15)	170

Symmetry code: (i) -x+1, -y, -z+1.