organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o683-o684

Pyrimethaminium 2-{[4-(tri­fluoro­meth­yl)phen­yl]sulfan­yl}benzoate di­methyl sulfoxide monosolvate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 April 2014; accepted 7 May 2014; online 17 May 2014)

In the cation of the title solvated mol­ecular salt, C12H14ClN4+·C14H8F3O2S·C2H6OS [systematic name of the cation: 2,4-di­amino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium], the dihedral angle between the planes of the pyrimidinium and 4-chloro­phenyl rings is 77.2 (5)°. In the anion, the planes of the benzene rings are twisted with respect to each other by 71.5 (5)°. Disorder was modelled for the dimethyl sulfoxide solvent mol­ecule over two set of sites in a 0.7487 (13):0.2513 (13) ratio. In the crystal, the cations are linked by inversion-generated pairs of N—H⋯N hydrogen bonds, with an R22(8) graph-set motif. The cation donates two N—H⋯O hydrogen bonds to the anion, also generating an R22(8) loop. These inter­actions, along with cation–solvent N—H⋯O hydrogen bonds, and cation–anion C—H⋯F, solvent–anion C—H⋯O and C—H⋯F inter­actions, result in a three-dimensional network.

Related literature

For background to pyrimethamine, see: Kraut & Matthews (1987[Kraut, J. & Matthews, D. A. (1987). Biological Macromolecules and Assemblies, edited by F. A. Jurnak & A. McPherson, Vol. 3, pp. 1-71. New York: John Wiley & Sons.]); Zuccotto et al. (1998[Zuccotto, F., Martin, A. C. R., Laskowski, R. A., Thornton, J. M. & Gilbert, I. H. (1998). J. Comput. Aided Mol. Des. 12, 241-257.]). For supra­molecular synthons, see: Desiraju (1995[Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311.]). For related structures, see: Balasubramani et al. (2005[Balasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203-o4205.]); Devi et al. (2006[Devi, P., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. E62, o3704-o3706.], 2007[Devi, P., Muthiah, P. T., Row, T. N. G. & Thiruvenkatam, V. (2007). Acta Cryst. E63, o4065-o4066.]); Ebenezer & Mu­thiah (2010[Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.]); Subashini et al. (2007[Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o3775.]); Thanigaimani et al. (2009[Thanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42-o45.]); Yamuna et al. (2013[Yamuna, T. S., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1704.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN4+·C14H8F3O2S·C2H6OS

  • Mr = 625.11

  • Monoclinic, P 21 /c

  • a = 12.7422 (3) Å

  • b = 22.2773 (3) Å

  • c = 11.1761 (3) Å

  • β = 114.014 (3)°

  • V = 2897.88 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.01 mm−1

  • T = 173 K

  • 0.36 × 0.18 × 0.06 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.374, Tmax = 1.000

  • 19462 measured reflections

  • 5571 independent reflections

  • 4889 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.02

  • 5571 reflections

  • 389 parameters

  • 54 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.79 2.674 (2) 178
N3—H3A⋯O1SAi 0.88 2.20 3.046 (6) 162
N3—H3A⋯O1SBi 0.88 2.13 2.97 (2) 161
N3—H3B⋯O2 0.88 1.93 2.809 (2) 176
N4—H4A⋯N2ii 0.88 2.15 3.030 (2) 175
N4—H4B⋯O1SAiii 0.88 2.25 2.962 (4) 138
N4—H4B⋯O1SBiii 0.88 2.06 2.740 (16) 133
C12—H12⋯F3iii 0.95 2.57 3.444 (2) 153
C2SA—H2SB⋯O2iv 0.98 2.44 3.376 (6) 160
C2SB—H2SE⋯F1v 0.98 2.55 3.16 (3) 120
C2SB—H2SF⋯O2iv 0.98 2.47 3.21 (2) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x-1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyrimethamine (trade name Daraprim; {5-(4-chlorophenyl)-6-ethyl-2,4- pyrimidinediamine} is an antifolate drug and a medication used in combination with other drugs for treatment of protozoan disease like toxoplasmosis, bacterial infections and some types of cancer (Zuccotto et al., 1998; Kraut & Matthews, 1987). Pyrimethamine (PMN) exhibits a donor–acceptor–donor site, so that together with a complimentary molecule it can form three hydrogen bonds, yielding a robust supramolecular synthon (Desiraju, 1995). The crystal structure of 2-amino-4,6-dimethylpyrimidine-cinnamic acid (Balasubramani et al., 2005), pyrimethaminium 3,5-dinitrobenzoate (Subashini et al., 2007),pyrimethamine hydrogen adipate (Devi et al., 2007),2-amino-4,6-dimethylpyrimidine-terephthalic acid (Devi et al., 2006), 2-amino-4,6-dimethylpyrimidine-anthranilic acid (Ebenezer & Muthiah , 2010), 2-amino-4,6-dimethoxypyrimidinium picrate and pyrimethaminium picrate dimethyl sulfoxide solvate (Thanigaimani et al., 2009) have been reported. Recently, the structure of [2-(4- (Trifluoromethyl)phenylsulfanyl]benzoic acid (Yamuna et al., 2013) used in the preparation of the title compound was reported by our research group. As part of our studies in this area, this paper reports the crystal structure of the title compound, (I), (Fig. 1).

In the cation, the dihedral angle between the mean plane of the pyrimidinium and the 4-chlorophenyl ring is 77.2 (5)°. In the anion, the mean planes of the two phenyl rings are twisted with respect to each other by 71.5 (5)°. Disorder was modelled for the dimethyl sulfoxide solvent molecule over two sites in a 0.7487 (13):0.2513 (13) ratio. Within the asymmetric unit, cation-anion N—H···O hydrogen bonds (forming R22(8) graph-set ring motifs) along with cation-cation N—H···N hydrogen bonds are observed. In the crystal additional cation-cation N—H···N hydrogen bonds and cation-solvate N—H···O hydrogen bonds help to consolidate the packing (Fig. 2). Weak cation-anion C—H···F, and solvate-anion C—H···O, C—H···F are also observed (Table 1).

Related literature top

For background to pyrimethamine, see: Kraut & Matthews (1987); Zuccotto et al.(1998). For supramolecular synthons, see: Desiraju (1995). For related structures, see: Balasubramani et al. (2005); Devi et al. (2006, 2007); Ebenezer & Muthiah (2010); Subashini et al. (2007); Thanigaimani et al. (2009); Yamuna et al. (2013).

Experimental top

Pyrimethamine (0.5 g, 0.2010 mmol) and 2-(4-trifluoromethylphenyl sulfanyl)benzoic acid(0.599 g, 0.2010 mmol) were dissolved in 10 ml of hot dimethyl sulphoxide solution and stirred for 20 minutes and kept aside for slow evaporation. After few days, irregular colourless chunks of the title compound were developed (m.p: 383–388 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH); 0.99Å (CH2); 0.98Å (CH3) or 0.88Å (NH, NH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH, NH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me groups refined as rotating groups. Disorder was modelled for the S1S, O1S, C1S and C2S atoms of the dimethyl sulfoxide solvent molecule over two sites in a 0.7487 (13):0.2513 (13) ratio.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) showing 30% probability displacement ellipsoids. Dashed lines indicate N—H···O hydrogen bonds within the asymmetric unit forming R22(8) graph-set ring motifs.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate cation-anion N—H···O hydrogen bonds (forming R22(8) graph-set ring motifs) along with cation-cation N—H···N hydrogen bonds, cation-solvate N—H···O hydrogen bonds and weak cation-anion C—H···F, and solvate-anion C—H···O, C—H···F interactions.
2,4-Diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2-{[4-(trifluoromethyl)phenyl]sulfanyl}benzoate dimethyl sulfoxide monosolvate top
Crystal data top
C12H14ClN4+·C14H8F3O2S·C2H6OSF(000) = 1296
Mr = 625.11Dx = 1.433 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.7422 (3) ÅCell parameters from 8424 reflections
b = 22.2773 (3) Åθ = 4.0–71.5°
c = 11.1761 (3) ŵ = 3.01 mm1
β = 114.014 (3)°T = 173 K
V = 2897.88 (12) Å3Irregular, colourless
Z = 40.36 × 0.18 × 0.06 mm
Data collection top
Agilent Eos Gemini
diffractometer
5571 independent reflections
Radiation source: Enhance (Cu) X-ray Source4889 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.046
ω scansθmax = 71.4°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1515
Tmin = 0.374, Tmax = 1.000k = 2727
19462 measured reflectionsl = 813
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0872P)2 + 1.2456P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.72 e Å3
5571 reflectionsΔρmin = 0.41 e Å3
389 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
54 restraintsExtinction coefficient: 0.00062 (19)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H14ClN4+·C14H8F3O2S·C2H6OSV = 2897.88 (12) Å3
Mr = 625.11Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.7422 (3) ŵ = 3.01 mm1
b = 22.2773 (3) ÅT = 173 K
c = 11.1761 (3) Å0.36 × 0.18 × 0.06 mm
β = 114.014 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
5571 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
4889 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 1.000Rint = 0.046
19462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04954 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.02Δρmax = 0.72 e Å3
5571 reflectionsΔρmin = 0.41 e Å3
389 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.59857 (4)0.47670 (2)0.25721 (5)0.02905 (16)
F10.88133 (16)0.63579 (7)0.0149 (2)0.0652 (5)
F20.85792 (17)0.55628 (11)0.13276 (16)0.0758 (6)
F31.00185 (12)0.56365 (7)0.05033 (16)0.0488 (4)
O10.45576 (13)0.44517 (6)0.36254 (16)0.0343 (3)
O20.40640 (15)0.35336 (7)0.40052 (19)0.0431 (4)
C130.45497 (17)0.38898 (9)0.3526 (2)0.0304 (4)
C140.51534 (17)0.36331 (9)0.2722 (2)0.0311 (4)
C14A0.8891 (2)0.57575 (11)0.0105 (2)0.0410 (5)
C150.57766 (16)0.39873 (9)0.2191 (2)0.0280 (4)
C160.61951 (18)0.37158 (10)0.1337 (2)0.0356 (5)
H160.66140.39490.09690.043*
C170.6006 (2)0.31154 (12)0.1027 (3)0.0504 (7)
H170.62820.29420.04340.060*
C180.5418 (2)0.27616 (11)0.1570 (4)0.0593 (8)
H180.52970.23460.13650.071*
C190.5010 (2)0.30267 (11)0.2418 (3)0.0466 (6)
H190.46180.27850.28060.056*
C200.68608 (17)0.49999 (9)0.17504 (19)0.0277 (4)
C210.63817 (18)0.53953 (10)0.0700 (2)0.0332 (4)
H210.55910.54970.03880.040*
C220.7044 (2)0.56394 (10)0.0109 (2)0.0373 (5)
H220.67140.59110.06020.045*
C230.81971 (19)0.54862 (9)0.0557 (2)0.0314 (4)
C240.86825 (18)0.50883 (10)0.1591 (2)0.0330 (4)
H240.94690.49790.18860.040*
C250.80155 (18)0.48508 (10)0.2193 (2)0.0316 (4)
H250.83500.45840.29120.038*
Cl10.08126 (6)0.85545 (2)0.33795 (7)0.0507 (2)
N10.28497 (13)0.50285 (7)0.39467 (15)0.0239 (3)
H10.34100.48450.38240.029*
N20.12544 (14)0.49511 (7)0.44931 (16)0.0257 (3)
N30.22872 (16)0.41131 (8)0.44299 (19)0.0341 (4)
H3A0.18260.38880.46500.041*
H3B0.28590.39470.43000.041*
N40.02748 (15)0.57911 (8)0.45960 (18)0.0303 (4)
H4A0.01760.55600.48190.036*
H4B0.01600.61810.45250.036*
C10.21210 (16)0.47019 (8)0.42950 (18)0.0243 (4)
C20.11292 (16)0.55510 (8)0.43659 (18)0.0243 (4)
C30.18716 (16)0.59204 (8)0.39895 (18)0.0241 (4)
C40.27322 (16)0.56345 (8)0.37826 (17)0.0234 (4)
C50.35677 (18)0.59368 (9)0.3344 (2)0.0288 (4)
H5A0.43490.57800.38650.035*
H5B0.35720.63730.35140.035*
C60.3271 (2)0.58358 (11)0.1887 (2)0.0398 (5)
H6A0.32990.54050.17210.060*
H6B0.38270.60490.16410.060*
H6C0.24970.59890.13670.060*
C70.16593 (16)0.65788 (8)0.38331 (19)0.0248 (4)
C80.19577 (19)0.69472 (9)0.4931 (2)0.0311 (4)
H80.23340.67800.57820.037*
C90.1710 (2)0.75557 (9)0.4791 (2)0.0350 (5)
H90.19230.78060.55410.042*
C100.11506 (18)0.77934 (9)0.3554 (2)0.0326 (5)
C110.08432 (19)0.74404 (10)0.2442 (2)0.0338 (5)
H110.04620.76100.15930.041*
C120.11064 (18)0.68325 (9)0.2598 (2)0.0297 (4)
H120.09040.65850.18450.036*
S1SA0.77732 (6)0.71883 (3)0.36675 (8)0.0390 (2)0.7487 (13)
O1SA0.8835 (4)0.68442 (14)0.4534 (4)0.0415 (8)0.7487 (13)
C1SA0.6760 (7)0.6652 (8)0.2710 (19)0.0757 (14)0.7487 (13)
H1SA0.64140.64550.32460.114*0.7487 (13)
H1SB0.71440.63510.23890.114*0.7487 (13)
H1SC0.61590.68520.19650.114*0.7487 (13)
C2SA0.8085 (6)0.7538 (3)0.2407 (7)0.0677 (16)0.7487 (13)
H2SA0.87250.78190.28030.102*0.7487 (13)
H2SB0.74050.77550.18090.102*0.7487 (13)
H2SC0.82970.72300.19190.102*0.7487 (13)
S1SB0.80800 (19)0.68308 (10)0.2873 (2)0.0390 (2)0.2513 (13)
O1SB0.8765 (16)0.6714 (6)0.4284 (13)0.0415 (8)0.2513 (13)
C1SB0.664 (2)0.667 (3)0.260 (6)0.0757 (14)0.2513 (13)
H1SD0.65690.62450.27870.114*0.2513 (13)
H1SE0.61320.67540.16830.114*0.2513 (13)
H1SF0.64090.69190.31750.114*0.2513 (13)
C2SB0.794 (2)0.7625 (7)0.270 (3)0.0677 (16)0.2513 (13)
H2SD0.86870.77990.28200.102*0.2513 (13)
H2SE0.76970.77880.33550.102*0.2513 (13)
H2SF0.73720.77230.18190.102*0.2513 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (3)0.0260 (3)0.0308 (3)0.00097 (17)0.0168 (2)0.00265 (17)
F10.0647 (11)0.0439 (9)0.0959 (14)0.0030 (7)0.0418 (10)0.0216 (8)
F20.0761 (12)0.1208 (17)0.0363 (9)0.0481 (12)0.0287 (8)0.0166 (9)
F30.0403 (8)0.0504 (8)0.0605 (9)0.0097 (6)0.0254 (7)0.0024 (7)
O10.0374 (8)0.0294 (7)0.0446 (9)0.0013 (6)0.0254 (7)0.0030 (6)
O20.0435 (9)0.0340 (8)0.0627 (11)0.0035 (7)0.0327 (8)0.0002 (7)
C130.0246 (9)0.0316 (10)0.0342 (10)0.0011 (8)0.0113 (8)0.0016 (8)
C140.0214 (9)0.0295 (10)0.0404 (11)0.0033 (7)0.0104 (8)0.0022 (8)
C14A0.0433 (13)0.0408 (12)0.0387 (12)0.0119 (10)0.0165 (10)0.0029 (9)
C150.0216 (9)0.0274 (9)0.0315 (10)0.0038 (7)0.0070 (8)0.0039 (7)
C160.0268 (10)0.0390 (11)0.0427 (12)0.0001 (8)0.0158 (9)0.0111 (9)
C170.0368 (12)0.0470 (14)0.0759 (18)0.0015 (10)0.0316 (13)0.0260 (13)
C180.0477 (14)0.0316 (12)0.113 (3)0.0061 (11)0.0467 (16)0.0258 (14)
C190.0344 (12)0.0321 (11)0.0814 (19)0.0024 (9)0.0319 (12)0.0079 (11)
C200.0308 (10)0.0260 (9)0.0264 (10)0.0011 (7)0.0117 (8)0.0030 (7)
C210.0288 (10)0.0332 (10)0.0326 (11)0.0002 (8)0.0074 (8)0.0022 (8)
C220.0373 (12)0.0365 (11)0.0302 (11)0.0028 (9)0.0057 (9)0.0069 (8)
C230.0346 (11)0.0302 (10)0.0272 (10)0.0089 (8)0.0105 (8)0.0066 (8)
C240.0284 (10)0.0376 (11)0.0312 (10)0.0006 (8)0.0102 (8)0.0032 (8)
C250.0330 (11)0.0343 (10)0.0259 (10)0.0050 (8)0.0104 (8)0.0032 (8)
Cl10.0609 (4)0.0217 (3)0.0834 (5)0.0048 (2)0.0435 (4)0.0001 (2)
N10.0252 (8)0.0232 (8)0.0268 (8)0.0005 (6)0.0143 (6)0.0013 (6)
N20.0249 (8)0.0244 (8)0.0302 (8)0.0024 (6)0.0138 (7)0.0021 (6)
N30.0383 (10)0.0228 (8)0.0514 (11)0.0008 (7)0.0289 (9)0.0049 (7)
N40.0288 (8)0.0240 (8)0.0451 (10)0.0000 (6)0.0222 (8)0.0037 (7)
C10.0251 (9)0.0238 (9)0.0241 (9)0.0021 (7)0.0101 (7)0.0006 (7)
C20.0241 (9)0.0252 (9)0.0234 (9)0.0029 (7)0.0096 (7)0.0004 (7)
C30.0259 (9)0.0243 (9)0.0228 (9)0.0029 (7)0.0105 (7)0.0002 (7)
C40.0253 (9)0.0252 (9)0.0208 (9)0.0046 (7)0.0105 (7)0.0023 (6)
C50.0305 (10)0.0272 (9)0.0349 (11)0.0057 (7)0.0197 (9)0.0018 (7)
C60.0437 (13)0.0488 (13)0.0344 (12)0.0031 (10)0.0235 (10)0.0052 (9)
C70.0244 (9)0.0228 (9)0.0323 (10)0.0036 (7)0.0167 (8)0.0012 (7)
C80.0369 (11)0.0303 (10)0.0302 (10)0.0063 (8)0.0177 (9)0.0022 (8)
C90.0453 (12)0.0272 (10)0.0418 (12)0.0095 (9)0.0272 (10)0.0111 (8)
C100.0351 (11)0.0208 (9)0.0528 (13)0.0014 (8)0.0289 (10)0.0015 (8)
C110.0378 (11)0.0279 (10)0.0385 (11)0.0044 (8)0.0185 (9)0.0061 (8)
C120.0361 (11)0.0249 (9)0.0302 (10)0.0002 (8)0.0155 (8)0.0032 (7)
S1SA0.0363 (4)0.0300 (3)0.0499 (4)0.0043 (3)0.0168 (3)0.0011 (3)
O1SA0.0374 (12)0.0271 (19)0.0538 (19)0.0023 (15)0.0121 (14)0.0044 (13)
C1SA0.067 (3)0.0428 (19)0.078 (4)0.012 (2)0.011 (3)0.003 (2)
C2SA0.063 (3)0.073 (3)0.080 (4)0.018 (2)0.041 (2)0.033 (3)
S1SB0.0363 (4)0.0300 (3)0.0499 (4)0.0043 (3)0.0168 (3)0.0011 (3)
O1SB0.0374 (12)0.0271 (19)0.0538 (19)0.0023 (15)0.0121 (14)0.0044 (13)
C1SB0.067 (3)0.0428 (19)0.078 (4)0.012 (2)0.011 (3)0.003 (2)
C2SB0.063 (3)0.073 (3)0.080 (4)0.018 (2)0.041 (2)0.033 (3)
Geometric parameters (Å, º) top
S1—C151.782 (2)N4—C21.329 (3)
S1—C201.786 (2)C2—C31.440 (3)
F1—C14A1.341 (3)C3—C41.367 (3)
F2—C14A1.331 (3)C3—C71.489 (3)
F3—C14A1.343 (3)C4—C51.501 (3)
O1—C131.256 (3)C5—H5A0.9900
O2—C131.252 (3)C5—H5B0.9900
C13—C141.514 (3)C5—C61.531 (3)
C14—C151.410 (3)C6—H6A0.9800
C14—C191.387 (3)C6—H6B0.9800
C14A—C231.492 (3)C6—H6C0.9800
C15—C161.405 (3)C7—C81.394 (3)
C16—H160.9500C7—C121.389 (3)
C16—C171.378 (3)C8—H80.9500
C17—H170.9500C8—C91.386 (3)
C17—C181.386 (4)C9—H90.9500
C18—H180.9500C9—C101.378 (3)
C18—C191.385 (4)C10—C111.386 (3)
C19—H190.9500C11—H110.9500
C20—C211.394 (3)C11—C121.389 (3)
C20—C251.388 (3)C12—H120.9500
C21—H210.9500S1SA—O1SA1.513 (4)
C21—C221.378 (3)S1SA—C1SA1.765 (14)
C22—H220.9500S1SA—C2SA1.791 (5)
C22—C231.388 (3)C1SA—H1SA0.9800
C23—C241.387 (3)C1SA—H1SB0.9800
C24—H240.9500C1SA—H1SC0.9800
C24—C251.385 (3)C2SA—H2SA0.9800
C25—H250.9500C2SA—H2SB0.9800
Cl1—C101.741 (2)C2SA—H2SC0.9800
N1—H10.8800S1SB—O1SB1.482 (13)
N1—C11.356 (2)S1SB—C1SB1.78 (2)
N1—C41.362 (2)S1SB—C2SB1.780 (15)
N2—C11.332 (3)C1SB—H1SD0.9800
N2—C21.347 (2)C1SB—H1SE0.9800
N3—H3A0.8800C1SB—H1SF0.9800
N3—H3B0.8800C2SB—H2SD0.9800
N3—C11.327 (3)C2SB—H2SE0.9800
N4—H4A0.8800C2SB—H2SF0.9800
N4—H4B0.8800
C15—S1—C20102.95 (9)C4—C3—C7124.00 (17)
O1—C13—C14116.17 (18)N1—C4—C3119.40 (17)
O2—C13—O1125.6 (2)N1—C4—C5115.78 (17)
O2—C13—C14118.25 (19)C3—C4—C5124.80 (17)
C15—C14—C13123.22 (18)C4—C5—H5A109.1
C19—C14—C13117.7 (2)C4—C5—H5B109.1
C19—C14—C15118.9 (2)C4—C5—C6112.35 (16)
F1—C14A—F3105.48 (19)H5A—C5—H5B107.9
F1—C14A—C23111.9 (2)C6—C5—H5A109.1
F2—C14A—F1107.5 (2)C6—C5—H5B109.1
F2—C14A—F3105.4 (2)C5—C6—H6A109.5
F2—C14A—C23112.77 (19)C5—C6—H6B109.5
F3—C14A—C23113.3 (2)C5—C6—H6C109.5
C14—C15—S1119.98 (15)H6A—C6—H6B109.5
C16—C15—S1121.39 (17)H6A—C6—H6C109.5
C16—C15—C14118.62 (19)H6B—C6—H6C109.5
C15—C16—H16119.6C8—C7—C3120.35 (18)
C17—C16—C15120.9 (2)C12—C7—C3120.80 (17)
C17—C16—H16119.6C12—C7—C8118.76 (18)
C16—C17—H17119.6C7—C8—H8119.7
C16—C17—C18120.8 (2)C9—C8—C7120.6 (2)
C18—C17—H17119.6C9—C8—H8119.7
C17—C18—H18120.7C8—C9—H9120.3
C19—C18—C17118.5 (2)C10—C9—C8119.33 (19)
C19—C18—H18120.7C10—C9—H9120.3
C14—C19—H19118.9C9—C10—Cl1119.36 (17)
C18—C19—C14122.2 (2)C9—C10—C11121.61 (19)
C18—C19—H19118.9C11—C10—Cl1119.03 (18)
C21—C20—S1117.75 (16)C10—C11—H11120.8
C25—C20—S1122.71 (16)C10—C11—C12118.3 (2)
C25—C20—C21119.23 (19)C12—C11—H11120.8
C20—C21—H21119.7C7—C12—C11121.40 (19)
C22—C21—C20120.6 (2)C7—C12—H12119.3
C22—C21—H21119.7C11—C12—H12119.3
C21—C22—H22120.2O1SA—S1SA—C1SA106.8 (5)
C21—C22—C23119.7 (2)O1SA—S1SA—C2SA107.3 (3)
C23—C22—H22120.2C1SA—S1SA—C2SA99.2 (7)
C22—C23—C14A118.4 (2)S1SA—C1SA—H1SA109.5
C24—C23—C14A121.3 (2)S1SA—C1SA—H1SB109.5
C24—C23—C22120.3 (2)S1SA—C1SA—H1SC109.5
C23—C24—H24120.2H1SA—C1SA—H1SB109.5
C25—C24—C23119.7 (2)H1SA—C1SA—H1SC109.5
C25—C24—H24120.2H1SB—C1SA—H1SC109.5
C20—C25—H25119.8S1SA—C2SA—H2SA109.5
C24—C25—C20120.43 (19)S1SA—C2SA—H2SB109.5
C24—C25—H25119.8S1SA—C2SA—H2SC109.5
C1—N1—H1119.3H2SA—C2SA—H2SB109.5
C1—N1—C4121.32 (16)H2SA—C2SA—H2SC109.5
C4—N1—H1119.3H2SB—C2SA—H2SC109.5
C1—N2—C2117.81 (16)O1SB—S1SB—C1SB105.6 (19)
H3A—N3—H3B120.0O1SB—S1SB—C2SB106.3 (10)
C1—N3—H3A120.0C1SB—S1SB—C2SB97.8 (18)
C1—N3—H3B120.0S1SB—C1SB—H1SD109.5
H4A—N4—H4B120.0S1SB—C1SB—H1SE109.5
C2—N4—H4A120.0S1SB—C1SB—H1SF109.5
C2—N4—H4B120.0H1SD—C1SB—H1SE109.5
N2—C1—N1122.34 (17)H1SD—C1SB—H1SF109.5
N3—C1—N1117.82 (17)H1SE—C1SB—H1SF109.5
N3—C1—N2119.84 (17)S1SB—C2SB—H2SD109.5
N2—C2—C3122.31 (17)S1SB—C2SB—H2SE109.5
N4—C2—N2116.76 (17)S1SB—C2SB—H2SF109.5
N4—C2—C3120.92 (17)H2SD—C2SB—H2SE109.5
C2—C3—C7119.20 (17)H2SD—C2SB—H2SF109.5
C4—C3—C2116.79 (17)H2SE—C2SB—H2SF109.5
S1—C15—C16—C17178.56 (19)C25—C20—C21—C220.4 (3)
S1—C20—C21—C22173.43 (17)Cl1—C10—C11—C12179.21 (16)
S1—C20—C25—C24173.98 (16)N1—C4—C5—C676.0 (2)
F1—C14A—C23—C2253.3 (3)N2—C2—C3—C41.0 (3)
F1—C14A—C23—C24126.9 (2)N2—C2—C3—C7178.32 (17)
F2—C14A—C23—C2268.0 (3)N4—C2—C3—C4179.53 (18)
F2—C14A—C23—C24111.8 (3)N4—C2—C3—C71.2 (3)
F3—C14A—C23—C22172.42 (19)C1—N1—C4—C30.9 (3)
F3—C14A—C23—C247.8 (3)C1—N1—C4—C5177.64 (17)
O1—C13—C14—C155.1 (3)C1—N2—C2—N4178.57 (18)
O1—C13—C14—C19170.1 (2)C1—N2—C2—C31.9 (3)
O2—C13—C14—C15176.7 (2)C2—N2—C1—N11.5 (3)
O2—C13—C14—C198.1 (3)C2—N2—C1—N3178.96 (18)
C13—C14—C15—S15.4 (3)C2—C3—C4—N10.4 (3)
C13—C14—C15—C16172.93 (19)C2—C3—C4—C5177.92 (17)
C13—C14—C19—C18172.7 (2)C2—C3—C7—C875.3 (2)
C14—C15—C16—C170.3 (3)C2—C3—C7—C12101.2 (2)
C14A—C23—C24—C25179.2 (2)C3—C4—C5—C6102.4 (2)
C15—S1—C20—C21113.10 (17)C3—C7—C8—C9176.74 (19)
C15—S1—C20—C2573.32 (19)C3—C7—C12—C11176.20 (19)
C15—C14—C19—C182.6 (4)C4—N1—C1—N20.1 (3)
C15—C16—C17—C181.3 (4)C4—N1—C1—N3179.68 (17)
C16—C17—C18—C190.9 (5)C4—C3—C7—C8105.4 (2)
C17—C18—C19—C141.1 (5)C4—C3—C7—C1278.1 (3)
C19—C14—C15—S1179.52 (18)C7—C3—C4—N1179.68 (17)
C19—C14—C15—C162.2 (3)C7—C3—C4—C51.3 (3)
C20—S1—C15—C14177.34 (16)C7—C8—C9—C100.8 (3)
C20—S1—C15—C164.38 (19)C8—C7—C12—C110.4 (3)
C20—C21—C22—C230.5 (3)C8—C9—C10—Cl1178.69 (16)
C21—C20—C25—C240.5 (3)C8—C9—C10—C110.9 (3)
C21—C22—C23—C14A179.9 (2)C9—C10—C11—C120.4 (3)
C21—C22—C23—C240.2 (3)C10—C11—C12—C70.2 (3)
C22—C23—C24—C251.0 (3)C12—C7—C8—C90.2 (3)
C23—C24—C25—C201.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.792.674 (2)178
N3—H3A···O1SAi0.882.203.046 (6)162
N3—H3A···O1SBi0.882.132.97 (2)161
N3—H3B···O20.881.932.809 (2)176
N4—H4A···N2ii0.882.153.030 (2)175
N4—H4B···O1SAiii0.882.252.962 (4)138
N4—H4B···O1SBiii0.882.062.740 (16)133
C12—H12···F3iii0.952.573.444 (2)153
C2SA—H2SB···O2iv0.982.443.376 (6)160
C2SB—H2SE···F1v0.982.553.16 (3)120
C2SB—H2SF···O2iv0.982.473.21 (2)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.792.674 (2)178
N3—H3A···O1SAi0.882.203.046 (6)162
N3—H3A···O1SBi0.882.132.97 (2)161
N3—H3B···O20.881.932.809 (2)176
N4—H4A···N2ii0.882.153.030 (2)175
N4—H4B···O1SAiii0.882.252.962 (4)138
N4—H4B···O1SBiii0.882.062.740 (16)133
C12—H12···F3iii0.952.573.444 (2)153
C2SA—H2SB···O2iv0.982.443.376 (6)160
C2SB—H2SE···F1v0.982.553.16 (3)120
C2SB—H2SF···O2iv0.982.473.21 (2)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1/2, z+1/2; (v) x, y+3/2, z+1/2.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBalasubramani, K., Muthiah, P. T., RajaRam, R. K. & Sridhar, B. (2005). Acta Cryst. E61, o4203–o4205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311.  CrossRef Web of Science Google Scholar
First citationDevi, P., Muthiah, P. T., Row, T. N. G. & Thiruvenkatam, V. (2007). Acta Cryst. E63, o4065–o4066.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDevi, P., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2006). Acta Cryst. E62, o3704–o3706.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEbenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKraut, J. & Matthews, D. A. (1987). Biological Macromolecules and Assemblies, edited by F. A. Jurnak & A. McPherson, Vol. 3, pp. 1–71. New York: John Wiley & Sons.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o3775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Subashini, A., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2009). Acta Cryst. C65, o42–o45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYamuna, T. S., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013). Acta Cryst. E69, o1704.  CSD CrossRef IUCr Journals Google Scholar
First citationZuccotto, F., Martin, A. C. R., Laskowski, R. A., Thornton, J. M. & Gilbert, I. H. (1998). J. Comput. Aided Mol. Des. 12, 241–257.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o683-o684
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds