

V = 2977.18 (11) Å³

 $0.20 \times 0.09 \times 0.09$ mm

45181 measured reflections

9225 independent reflections 4420 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Mo $K\alpha$ radiation

 $\mu = 1.51 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.037$

refinement $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2H,5H)dione

Mehmet Akkurt,^a Shaaban K. Mohamed,^{b,c} Antar A. Abdelhamid,^d Abdel-Aal M. Gaber^e and Mustafa R. Albayati^f*

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, "Department of Chemistry, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq Correspondence e-mail: shaabankamel@yahoo.com

Received 7 May 2014; accepted 8 May 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.050; wR factor = 0.147; data-to-parameter ratio = 26.6.

In the title compound, $C_{33}H_{27}BrClNO_4$, the dihydropyridine ring adopts a flattened boat conformation. The molecular conformation is stabilized by an intramolecular O-H···O hydrogen bond, with an S(8) ring motif. In the crystal, O- $H \cdots O, C - H \cdots O$ and $C - H \cdots Cl$ hydrogen bonds, and C - $H \cdots \pi$ interactions link the molecules, forming a threedimensional network. In the acridinedione ring system, the two ring C atoms at the 2- and 3-positions, and the C atom at the 6-position and the atoms of the phenyl ring attached to the C atom at the 6-position are disordered over two sets of sites with occupancy ratios of 0.783 (5):0.217 (5) and 0.526 (18):0.474 (18), respectively.

Related literature

For different industrial applications of acridine-1,8-diones, see: Murugan et al. (1998); Srividya et al. (1996, 1998). For various pharmaceutical properties of acridine-containing compounds, see: Girault et al. (2000); Sánchez et al. (2006); Astelbauer et al. (2011); Yang et al. (2006); Shaikh et al. (2010); Gunduz et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Mohamed et al. (2013); Sughanya & Sureshbabu (2012); Yogavel et al. (2005).

Experimental

Crystal data C33H27BrClNO4 $M_r = 616.91$ Monoclinic, $P2_1/c$ a = 14.7307 (3) Å b = 15.4874 (3) Å c = 13.6541 (3) Å $\beta = 107.110(2)^{\circ}$

Data collection

```
Oxford Diffraction Xcalibur CCD
  diffractometer
Absorption correction: analytical
  (CrysAlis RED; Oxford Diffrac-
  tion, 2003)
  T_{\min} = 0.631, \ T_{\max} = 0.791
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.147$ S = 0.929225 reflections 347 parameters 107 restraints

Table 1 Hydrogen-bond geometry (Å, °).

Cg6, Cg7 and Cg9 are the centroids of the C28B_B-C33B_B, C14-C19 and C28A_A-C33A_A phenyl rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2O\cdotsO1^{i}$	0.87 (2)	1.93 (2)	2.782 (3)	167 (5)
O4−H4 <i>O</i> ···O1	0.83 (3)	1.84 (3)	2.632 (2)	161 (3)
$C10-H10A\cdots O3^{ii}$	0.97(2)	2.54 (2)	3.211 (3)	126 (2)
$C31B_b-H31B_b\cdots Cl1^{iii}$	0.93	2.76	3.530 (7)	141
$C26-H26B\cdots O3^{ii}$	0.97	2.57	3.537 (3)	173
$C16-H16\cdots Cg6^{iv}$	0.93	2.89	3.713 (4)	149
$C16-H16\cdots Cg9^{iv}$	0.93	2.86	3.718 (4)	154
$C27 - H27B \cdots Cg7^{v}$	0.97	2.71	3.574 (3)	149

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x - 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) -x, -y + 1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

Manchester Metropolitan University and Erciyes University are acknowledged for supporting this study. We also thank Professor Dominik Cinčić at the Department of Chemistry, University of Zagreb, for collecting the single-crystal X-ray diffraction data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5395).

References

- Astelbauer, F., Obwaller, A., Raninger, A., Brem, B., Greger, H., Duchêne, M., Wernsdorfer, W. & Walochnik, J. (2011). Vector Borne Zoonotic Dis. 11, 793–798.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Girault, S., Grellier, P., Berecibar, A., Maes, L., Mouray, E., Lemiere, P., Debreu, M., Charvet, E. & Sergheraet, C. (2000). J. Med. Chem. 43, 2646– 2654.

- Gunduz, M. G., Dogan, A. E., Simsek, R., Erol, K. & Safak, C. (2009). Med. Chem. Res. 18, 317–325.
- Mohamed, S. K., Akkurt, M., Horton, P. N., Abdelhamid, A. A. & Remaily, M. A. A. E. (2013). Acta Cryst. E69, 085–086.
- Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003.
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sánchez, I., Reches, R., Henry, D., Pierre, C., Maria, R. & Pujol, D. (2006). Eur. J. Med. Chem. 41, 340–352.
- Shaikh, B. M., Konda, S. G., Mehare, A. V., Mandawad, G. G., Chobe, S. S. & Dawan, B. S. (2010). Der Pharma Chem. 2, 25–29.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253.
- Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.
- Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.
- Yang, P., Yang, Q., Qian, X., Tong, L. & Li, X. (2006). J. Photochem. Photobiol. B, 84, 221–226.
- Yogavel, M., Velmurugan, D., Murugan, P., Shanmuga Sundara Raj, S. & Fun, H.-K. (2005). Acta Cryst. E61, o2761–o2763.

supporting information

Acta Cryst. (2014). E70, o663-o664 [doi:10.1107/S1600536814010460]

9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2*H*,5*H*)-dione

Mehmet Akkurt, Shaaban K. Mohamed, Antar A. Abdelhamid, Abdel-Aal M. Gaber and Mustafa R. Albayati

S1. Comment

Substituted acridinediones are an interested class of heterocyclic compounds due to their wide industrial and medicinal applications. Acridinones considered to be one of earlist antibiotics. Acridinone scakffold compounds exhibit various bioactivities such as, anti-malerial (Girault *et al.*, 2000), anti-tumor (Sánchez *et al.*, 2006), anti-leishmanial activities (Astelbauer *et al.*, 2011), DNA-binding and DNA photo-damaging ability (Yang *et al.*, 2006), antimicrobial activity (Shaikh *et al.*, 2010) and potassium channel blockers (Gunduz *et al.*, 2009). Certain acridine-1,8-diones showed fluorescence activities (Murugan *et al.*, 1998) and a few acridinedione derivatives also show photophysical (Srividya *et al.*, 1998) and electrochemical properties (Srividya *et al.*, 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information.

In the title compound (I, Fig. 1), the dihydropyridine ring (N1/C1/C6–C9) is nearly planar with a maximum deviation of 0.225 (2) Å for C7. The C14–C19 phenyl and C20–C25 benzene rings form dihedral angles of 73.40 (10) and 83.32 (11)°, respectively, with the dihydropyridine mean plane. The dihedral angle between the C28A–C33A and C28B and C33B disordered phenyl rings is 16.3 (4) °.

In (I), all bond lengths and angles are within normal ranges and and comparable with those in related similar compounds (Mohamed *et al.*, 2013; Sughanya & Sureshbabu, 2012; Yogavel *et al.*, 2005). The ethanol group attached to the 1,4-dihydropyridine ring has a N1—C26—C27—O2 torsion angle of -76.8 (3)°.

The molecular conformation of (I) is stabilized by an intramolecular O—H…O hydrogen bond (Table 1), which forms a pseudo-eight-membered ring with graph set S(8) (Bernstein *et al.*, 1995).

In the crystal, molecules are linked by O—H···O, C—H···O and C—H···Cl hydrogen bonds, forming three dimensional network (Table 1, Fig. 2). Furthermore, C—H··· π interactions (Table 1) contribute to the stabilization of the molecular packing.

S2. Experimental

A mixture of 1 mmol (235 mg) of 3-bromo-5-chloro-2-hydroxybenzaldehyde, 2 mmol (372 mg) of 5-phenylcyclohexane-1,3-dione and 1 mmol (61 mg) of 2-aminoethanol in 30 ml e thanol was refluxed for 2 h at 350 K. The reaction mixture was cooled at ambient temperature and the precipitated product was filtered off, washed with cold ethanol and recrystallized from ethanol. Suitable crystals for X-ray diffractions were obtained by slow evaporation method of an ethanolic solution of (I) at room temperature over two days.

S3. Refinement

The hydroxyl H atoms were found from a difference Fourier map [O2-H2O = 0.873 (19) Å and O4-H4O = 0.826 (17) Å]. Their coordinates were freely refined and $U_{iso}(H)$ were set to $1.5U_{eq}(O)$. The H atoms attached to C2 and C12 were located in a difference map and refined freely. The other H-atoms were placed in calculated positions and refined by using a riding model with C-H = $0.93 - 0.98 \text{ Å} [U_{iso}(H) = 1.2 U_{eq}(C)]$.

In the 3,4,9,10-tetrahydroacridine-1,8(2*H*,5H)-dione ring system, the two ring C atoms (C3 and C4) at the 2 and 3-poisitions are disordered over two positions with the site occupancy factors of 0.783 (5) and 0.217 (5). For the C4A and C4B atoms of disorder, the EXYZ instruction was used in the refinement.

The C atom (C11) at the 6-positions of the mentioned ring system and the atoms of the phenyl ring (C28–C33) attached to the C11 atom are disordered over two positions; the site occupancy factors are 0.526 (18) and 0.474 (18).

The atoms of disorder were set to equal each other by an EADP. The disordered phenyl ring (C28A/B–C33A/B) was constrained to a rigid hexagon with the AFIX 66 instruction, and the SIMU and DELU instructions were used in the refinement procedure.

Figure 1

View of the title compound with 30% probability displacement ellipsoids. Only the major components of the disorders are shown.

Figure 2

Perspective view of the hydrogen bonding and packing of the title compound. Only the major components of the disorders are shown.

9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,9,10-tetrahydroacridine-1,8(2*H*,5*H*)-dione

Crystal data

C₃₃H₂₇BrClNO₄ $M_r = 616.91$ Monoclinic, $P2_1/c$ a = 14.7307 (3) Å b = 15.4874 (3) Å c = 13.6541 (3) Å $\beta = 107.110$ (2)° V = 2977.18 (11) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2003) $T_{\min} = 0.631, T_{\max} = 0.791$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.147$ S = 0.92 F(000) = 1264 $D_x = 1.376 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 729 reflections $\theta = 4-45^{\circ}$ $\mu = 1.51 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.20 \times 0.09 \times 0.09 \text{ mm}$

45181 measured reflections 9225 independent reflections 4420 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 31.5^\circ, \theta_{min} = 3.8^\circ$ $h = -21 \rightarrow 21$ $k = -20 \rightarrow 22$ $l = -19 \rightarrow 19$

9225 reflections 347 parameters 107 restraints Hydrogen site location: mixed

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{ m max} < 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.60 \ { m e} \ { m \AA}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0793P)^2]$	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.01625 (15)	0.34409 (13)	0.18821 (16)	0.0299 (5)	
C2	-0.07136 (16)	0.37567 (16)	0.10912 (18)	0.0343 (5)	
H2A	-0.0682 (14)	0.3633 (13)	0.0439 (14)	0.053 (7)*	
H2B	-0.0689 (17)	0.4362 (10)	0.0999 (18)	0.041 (7)*	
C3A_a	-0.1607 (2)	0.3643 (2)	0.1427 (2)	0.0379 (8)	0.783 (5)
H3A_a	-0.1603	0.4087	0.1939	0.045*	0.783 (5)
C4A_a	-0.1630 (2)	0.2785 (2)	0.1905 (2)	0.0665 (9)	0.783 (5)
H4A1_a	-0.1655	0.2333	0.1406	0.080*	0.783 (5)
H4A2_a	-0.2193	0.2740	0.2132	0.080*	0.783 (5)
C3B_b	-0.1547 (7)	0.3181 (8)	0.1084 (9)	0.0379 (8)	0.217 (5)
H3B_b	-0.1537	0.2718	0.0598	0.045*	0.217 (5)
C4B_b	-0.1630 (2)	0.2785 (2)	0.1905 (2)	0.0665 (9)	0.217 (5)
H4B1_b	-0.1889	0.2215	0.1699	0.080*	0.217 (5)
H4B2 b	-0.2096	0.3098	0.2141	0.080*	0.217 (5)
C5	-0.07640 (18)	0.26775 (16)	0.27956 (19)	0.0430 (6)	
C6	0.01216 (15)	0.30127 (13)	0.27458 (16)	0.0316 (5)	
C7	0.10177 (15)	0.28391 (13)	0.36056 (16)	0.0316 (5)	
H7	0.0922	0.2310	0.3957	0.038*	
C8	0.18040 (16)	0.26804 (14)	0.31428 (16)	0.0338 (5)	
C9	0.18093 (15)	0.30655 (13)	0.22528 (16)	0.0321 (5)	
C10	0.26051 (17)	0.29515 (18)	0.17851 (19)	0.0423 (6)	
H10A	0.2387 (19)	0.2681 (16)	0.1118 (15)	0.061 (8)*	
H10B	0.288 (2)	0.3509 (15)	0.174 (3)	0.109 (13)*	
C11A a	0.3291 (9)	0.2237 (11)	0.2214 (11)	0.1126 (18)	0.474 (18)
C11B b	0.3472 (8)	0.2539 (10)	0.2571 (10)	0.1126 (18)	0.526 (18)
C12 _	0.3348 (3)	0.1940 (3)	0.3190 (3)	0.1126 (18)	
H12	0.3804 (19)	0.1599 (18)	0.357 (2)	0.092 (11)*	
C13	0.25648 (19)	0.20872 (17)	0.36687 (19)	0.0486 (6)	
C14	-0.24811 (12)	0.38033 (14)	0.04824 (15)	0.0603 (8)	
C15	-0.28188 (15)	0.32740 (11)	-0.03696 (18)	0.0739 (9)	
H15	-0.2522	0.2750	-0.0404	0.089*	
C16	-0.35997 (16)	0.35285 (15)	-0.11694 (15)	0.0804 (10)	
H16	-0.3826	0.3174	-0.1739	0.096*	
C17	-0.40429 (13)	0.43123 (16)	-0.11173 (15)	0.0801 (11)	
H17	-0.4565	0.4483	-0.1653	0.096*	

C18	-0.37052 (15)	0.48416 (13)	-0.02654 (18)	0.0781 (10)	
H18	-0.4002	0.5366	-0.0231	0.094*	
C19	-0.29243 (14)	0.45871 (14)	0.05344 (14)	0.0694 (9)	
H19	-0.2698	0.4941	0.1104	0.083*	
C20	0.12371 (16)	0.35813 (14)	0.43954 (17)	0.0347 (5)	
C21	0.07775 (17)	0.36271 (14)	0.51549 (17)	0.0371 (5)	
C22	0.09776 (19)	0.43067 (15)	0.58480 (19)	0.0449 (6)	
C23	0.1604 (2)	0.49502 (18)	0.5784 (2)	0.0600 (8)	
H23	0.1723	0.5410	0.6243	0.072*	
C24	0.2049 (2)	0.49020 (17)	0.5035 (2)	0.0587 (7)	
C25	0.18721 (19)	0.42243 (16)	0.4347(2)	0.0476 (6)	
H25	0.2184	0.4201	0.3847	0.057*	
C26	0 11376 (17)	0 41559 (15)	0.09010 (18)	0.0393 (6)	
H26A	0.0526	0.4237	0.0392	0.047*	
H26B	0 1567	0 3903	0.0562	0.047*	
C27	0 1515 (2)	0.5903	0.1339(2)	0.0592 (8)	
H27A	0.2028	0 4929	0.1968	0.071*	
H27B	0.1759	0.5325	0.0857	0.071*	
C28A a	0.4156 (5)	0.2360 (6)	0 1926 (6)	0.103(2)	0 474 (18)
C29A_a	0.4818 (5)	0.3021 (6)	0.2049(9)	0.103(2) 0.103(2)	0 474 (18)
H29A_a	0.4817	0.3476	0 2494	0.124*	0 474 (18)
C30A a	0 5482 (5)	0 3004 (6)	0 1507 (9)	0.103(2)	0 474 (18)
H30A a	0.5925	0.3446	0.1589	0.124*	0.474 (18)
C31A a	0.5484 (4)	0.2325 (8)	0.0842 (6)	0.103(2)	0.474 (18)
H31A a	0.5928	0.2313	0.0479	0.124*	0.474 (18)
C32A a	0.4822 (5)	0.1664 (9)	0.0718 (6)	0.103 (2)	0.474 (18)
H32A a	0.4823	0.1209	0.0273	0.124*	0.474 (18)
C33A a	0.4157 (4)	0.1681 (7)	0.1261 (6)	0.103 (2)	0.474 (18)
H33A a	0.3714	0.1239	0.1178	0.124*	0.474 (18)
C28B b	0.4134 (4)	0.2230 (5)	0.1810 (5)	0.0843 (16)	0.526 (18)
C29B b	0.4696 (5)	0.2920 (4)	0.1691 (7)	0.0843 (16)	0.526 (18)
H29B b	0.4623	0.3458	0.1962	0.101*	0.526 (18)
C30B b	0.5366 (5)	0.2807 (5)	0.1168 (7)	0.0843 (16)	0.526 (18)
H30B b	0.5742	0.3269	0.1089	0.101*	0.526 (18)
C31B b	0.5475 (4)	0.2003 (6)	0.0764 (4)	0.0843 (16)	0.526 (18)
H31B b	0.5924	0.1927	0.0414	0.101*	0.526 (18)
C32B b	0.4914 (5)	0.1313 (6)	0.0882 (6)	0.0843 (16)	0.526 (18)
H32B b	0.4987	0.0775	0.0612	0.101*	0.526 (18)
C33B b	0.4243 (5)	0.1426 (5)	0.1406 (6)	0.0843 (16)	0.526 (18)
H33B b	0.3868	0.0964	0.1485	0.101*	0.526 (18)
 N1	0.10280 (12)	0.35608 (11)	0.17027 (13)	0.0311 (4)	~ /
01	-0.08277 (13)	0.22579 (12)	0.35667 (13)	0.0538 (5)	
O2	0.0767 (2)	0.54656 (14)	0.1538 (2)	0.0989 (9)	
H2O	0.080 (3)	0.6015 (12)	0.141 (4)	0.148*	
03	0.25495 (15)	0.17139 (14)	0.44472 (14)	0.0661 (6)	
04	0.01542 (13)	0.30233 (11)	0.52701 (13)	0.0504 (5)	
H4O	-0.006 (2)	0.2696 (17)	0.4779 (19)	0.076*	
C11	0.28416 (9)	0.57108 (6)	0.49363 (10)	0.1102 (4)	
	. /	. /		. /	

Atomic displacement parameters $(Å^2)$ U^{12} U^{13} U^{23} U^{11} U^{22} U^{33} -0.0004(9)0.0332(12)0.0253(11)0.0332(11)-0.0002(9)0.0127 (10) 0.0320(12)0.0377(13)0.0357(12)0.0023(10)0.0140 (10) 0.0058 (10) 0.0337 (15) 0.0334 (18) 0.0492 (19) 0.0019 (14) 0.0163 (14) -0.0012(14)0.0211 (16) 0.0506 (17) 0.087(2)-0.0269(16)0.0103 (14) 0.0586 (18) 0.0337 (15) 0.0334 (18) 0.0492 (19) 0.0019 (14) 0.0163 (14) -0.0012(14)0.0506 (17) 0.087(2)0.0586 (18) -0.0269(16)0.0103 (14) 0.0211 (16) -0.0068(12)0.0019 (11) 0.0432 (14) 0.0484(15)0.0422 (13) 0.0206 (12) 0.0379(12)0.0287(11)0.0322(12)-0.0004(10)0.0165 (10) 0.0009(9)0.0409 (13) 0.0276(11) 0.0309(11) 0.0020(10) 0.0177 (10) 0.0046 (9) 0.0375 (13) 0.0347(12)0.0323(11)0.0046 (10) 0.0150 (10) 0.0018(9)0.0027(9)0.0020(9)0.0338(12)0.0314(12)0.0333(11)0.0131 (10) 0.0365 (13) 0.0557 (16) 0.0390(14)0.0121 (12) 0.0177 (11) 0.0113(12)0.091(2)0.181 (4) 0.095(3)0.103(3)0.072(2)0.096(3)0.091(2)0.181(4)0.095(3)0.103(3)0.072(2)0.096(3)0.091(2)0.181(4)0.095(3)0.103(3)0.072(2)0.096(3)0.0544 (16) 0.0581 (16) 0.0371 (13) 0.0196 (13) 0.0193 (12) 0.0136(12) 0.076 (2) 0.0332 (14) 0.0701 (19) -0.0117(15)0.0125 (14) 0.0273 (17) 0.0568 (19) 0.0585 (19) 0.109(3)-0.0041(16)0.028(2)0.016(2)0.070(2)0.082(2)0.078(2)-0.032(2)0.0037 (19) -0.0097(19)-0.0083(18)0.019 (2) 0.0467 (18) 0.094(3)0.082(3)-0.0080(17)0.059(2)0.079(2)0.089(2)0.0096 (18) 0.0099(19)0.008(2)0.0482(18)0.088(2)0.068(2)-0.0023(17)0.0101 (16) 0.0021 (17) 0.0379(13) 0.0334(12)0.0334(12)0.0043(10)0.0114 (10) 0.0031(9)0.0423(13)0.0342(12)0.0353(12)0.0043(11)0.0124(11)0.0024(10)0.0429(15)0.0053 (12) 0.0547 (16) 0.0407(13)0.0196 (12) -0.0043(11)0.073(2)0.0482 (17) 0.0587 (18) -0.0042(15)0.0200 (16) -0.0182(14)0.0642(19)0.0440(16)0.0725 (19) -0.0157(14)-0.0104(14)0.0271 (16) 0.0560 (16) 0.0444(15)0.0479 (15) -0.0057(12)0.0237(13)-0.0008(11)0.0393 (13) 0.0472 (14) 0.0096 (11) 0.0170 (10) 0.0365 (12) 0.0189 (11) 0.0572 (18) 0.0572 (17) 0.0693 (19) -0.0030(14)0.0278 (15) 0.0220(15) 0.067(3)0.135 (4) 0.123 (3) 0.048(3)0.053 (3) 0.076(3)0.067(3)0.135 (4) 0.123(3)0.048(3)0.053(3)0.076(3) 0.135 (4) 0.123(3)0.048(3)0.076 (3) 0.067(3)0.053(3)0.067(3)0.135(4)0.123(3)0.048(3)0.053(3)0.076(3)0.067(3)0.135 (4) 0.123(3)0.048(3)0.053(3)0.076(3)0.067(3)0.135(4)0.123(3)0.048(3)0.053(3)0.076(3)0.077(3)0.102(3)0.090(3)0.034(2)0.049(2)0.027(2)

0.68766 (2)

0.43737(2)

0.06519 (14)

Acta Cryst. (2014). E70, 0663-0664

0.077(3)

0.077(3)

0.077(3)

0.077(3)

0.077 (3)

0.0319 (10)

0.102(3)

0.102 (3)

0.102(3)

0.102 (3)

0.102 (3)

0.0332 (10)

0.090(3)

0.090(3)

0.090(3)

0.090(3)

0.090(3)

0.0311 (9)

0.034(2)

0.034(2)

0.034(2)

0.034(2)

0.034(2)

0.0044(8)

0.049(2)

0.049(2)

0.049(2)

0.049(2)

0.049(2)

0.0137 (8)

Br1

C1

C2

C3A a

C4A a

C3B b

C4B b

C5

C6

C7

C8

C9

C10

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28A a

C29A a

C30A a

C31A a

C32A a

C33A a

C28B b

C29B b

C30B b

C31B b

C32B b

C33B b

N1

C11A a

C11B b

0.03561(2)

0.027(2)

0.027(2)

0.027(2)

0.027(2)

0.027(2)

0.0078 (8)

supporting information

01	0.0595 (11)	0.0605 (11)	0.0455 (10)	-0.0196 (9)	0.0217 (9)	0.0091 (9)
O2	0.129 (2)	0.0555 (14)	0.147 (3)	-0.0043 (15)	0.094 (2)	-0.0106 (15)
O3	0.0770 (14)	0.0816 (14)	0.0477 (11)	0.0355 (11)	0.0306 (10)	0.0313 (10)
O4	0.0666 (12)	0.0495 (11)	0.0456 (11)	-0.0122 (9)	0.0328 (10)	-0.0060 (8)
Cl1	0.1282 (9)	0.0771 (6)	0.1453 (10)	-0.0597 (6)	0.0716 (8)	-0.0339 (6)
Br1	0.0877 (3)	0.0640 (2)	0.05536 (19)	0.00543 (16)	0.03890 (17)	-0.01486 (14)

Geometric parameters (Å, °)

C1—C6	1.370 (3)	C18—H18	0.9300
C1—N1	1.380 (3)	С19—Н19	0.9300
C1—C2	1.500 (3)	C20—C25	1.381 (3)
C2—C3B_b	1.515 (10)	C20—C21	1.397 (3)
C2—C3A_a	1.525 (4)	C21—O4	1.352 (3)
C2—H2A	0.925 (16)	C21—C22	1.388 (3)
C2—H2B	0.948 (15)	C22—C23	1.378 (4)
C3A_a—C4A_a	1.485 (4)	C22—Br1	1.891 (2)
C3A_a—C14	1.551 (3)	C23—C24	1.370 (4)
C3A_a—H3A_a	0.9800	С23—Н23	0.9300
C4A_a—C5	1.490 (4)	C24—C25	1.381 (4)
C4A_a—H4A1_a	0.9700	C24—Cl1	1.744 (3)
C4A_a—H4A2_a	0.9700	С25—Н25	0.9300
C3B_b—C14	1.684 (11)	C26—N1	1.476 (3)
C3B_b—H3B_b	0.9800	C26—C27	1.488 (4)
C5—O1	1.264 (3)	C26—H26A	0.9700
C5—C6	1.424 (3)	С26—Н26В	0.9700
C6—C7	1.510 (3)	C27—O2	1.402 (4)
C7—C8	1.494 (3)	С27—Н27А	0.9700
C7—C20	1.544 (3)	С27—Н27В	0.9700
С7—Н7	0.9800	C28A_a—C29A_a	1.3900
C8—C9	1.356 (3)	C28A_a—C33A_a	1.3900
C8—C13	1.464 (3)	C29A_a—C30A_a	1.3900
C9—N1	1.403 (3)	C29A_a—H29A_a	0.9300
C9—C10	1.501 (3)	C30A_a—C31A_a	1.3900
C10—C11A_a	1.497 (10)	C30A_a—H30A_a	0.9300
C10—C11B_b	1.544 (10)	C31A_a—C32A_a	1.3900
C10—H10A	0.968 (17)	C31A_a—H31A_a	0.9300
C10—H10B	0.964 (18)	C32A_a—C33A_a	1.3900
C11A_a—C12	1.388 (11)	C32A_a—H32A_a	0.9300
C11A_a—C28A_a	1.452 (12)	C33A_a—H33A_a	0.9300
C11B_b—C12	1.303 (11)	C28B_b—C29B_b	1.3900
C11B_b—C28B_b	1.690 (12)	C28B_b-C33B_b	1.3900
C12—C13	1.502 (4)	C29B_b—C30B_b	1.3900
C12—H12	0.889 (18)	C29B_b—H29B_b	0.9300
C13—O3	1.216 (3)	C30B_b—C31B_b	1.3900
C14—C15	1.3900	C30B_b—H30B_b	0.9300
C14—C19	1.3900	C31B_b—C32B_b	1.3900
C15—C16	1.3900	C31B_b—H31B_b	0.9300

C15—H15	0.9300	C32B b—C33B b	1 3900
C16-C17	1 3900	C32B b H32B b	0.9300
C16—H16	0.9300	$C_{33B} h H_{33B} h$	0.9300
C17-C18	1 3900	02—H2O	0.873(19)
C17—H17	0.9300	02 H20	0.875(17)
C18 $C10$	1 3000		0.020 (17)
010-019	1.3900		
C6—C1—N1	119 67 (19)	C18—C17—H17	120.0
C6-C1-C2	122.09(19)	$C_{16} - C_{17} - H_{17}$	120.0
$N_1 - C_1 - C_2$	122.09(19) 118 19(18)	C_{17} C_{18} C_{19}	120.0
C1 $C2$ $C3B$ h	100.6(4)	$C_{17} = C_{18} = C_{17}$	120.0
$C_1 = C_2 = C_3 A_{-2}$	107.0(4)	C_{10} C_{18} H_{18}	120.0
$C1 = C2 = C3A_a$	112.4(2)	C19 - C10 - C14	120.0
$C_1 - C_2 - H_2 A$	110.3(13)	C18 - C19 - C14	120.0
$C3B_D - C2 - H2A$	98.2 (10)		120.0
$C_3A_a = C_2 = H_2A$	123.8 (11)		120.0
CI-C2-H2B	111.0 (15)	C25—C20—C21	118.8 (2)
C3B_b—C2—H2B	130.1 (15)	C25—C20—C7	120.6 (2)
C3A_a—C2—H2B	103.0 (15)	C21—C20—C7	120.6 (2)
H2A—C2—H2B	93.6 (19)	O4—C21—C22	117.4 (2)
C4A_a—C3A_a—C2	111.7 (2)	O4—C21—C20	123.0 (2)
C4A_a—C3A_a—C14	112.8 (2)	C22—C21—C20	119.5 (2)
C2-C3A_a-C14	108.1 (2)	C23—C22—C21	121.1 (2)
C4A_a—C3A_a—H3A_a	108.0	C23—C22—Br1	119.11 (19)
C2—C3A_a—H3A_a	108.0	C21—C22—Br1	119.73 (19)
C14—C3A_a—H3A_a	108.0	C24—C23—C22	119.0 (2)
C3A a—C4A a—C5	109.5 (2)	C24—C23—H23	120.5
C3A a—C4A a—H4A1 a	109.8	С22—С23—Н23	120.5
C5—C4A a—H4A1 a	109.8	C23—C24—C25	120.9 (3)
C3A a—C4A a—H4A2 a	109.8	C23—C24—Cl1	119.8 (2)
C5—C4A a—H4A2 a	109.8	C25—C24—C11	119.3 (2)
H4A1 a - C4A a - H4A2 a	108.2	C_{20} C_{25} C_{24}	120.7(2)
C2-C3B b-C14	102.1 (6)	C_{20} C_{25} H_{25}	119.6
C_2 — C_3B b— H_3B b	105.1	C^{24} C^{25} H^{25}	119.6
C14— $C3B$ b— $H3B$ b	105.1	N1 - C26 - C27	111.4(2)
01-05-06	103.1 121.4(2)	N1 - C26 - H264	109.3
01 - C5 - C4	121.4(2) 118.8(2)	C_{27} C_{26} H_{26A}	109.3
$C_{1} = C_{2} = C_{1} + A_{2}$	110.8(2)	N1 C26 H26P	109.3
$C_0 = C_1 = C_4 A_a$	119.0(2)	C_{27} C_{26} H_{26} H_{26}	109.3
C1 = C0 = C3	119.4(2)	$U_2/-U_20$ -H20B	109.5
C1 = C0 = C7	120.38(19) 120.00(19)	$H_{20}A = C_{20} = H_{20}B$	108.0
C_{3}	120.09 (18)	02 - 02 - 027 - 026	107.7 (2)
	108.03 (17)	$O_2 - C_2 / - H_2 / A$	110.2
C8—C7—C20	112.89 (18)	C26—C27—H27A	110.2
C6—C7—C20	111.46 (17)	02—C27—H27B	110.2
С8—С7—Н7	108.1	С26—С27—Н27В	110.2
С6—С7—Н7	108.1	H27A—C27—H27B	108.5
С20—С7—Н7	108.1	C29A_a—C28A_a—C33A_a	120.0
C9—C8—C13	120.7 (2)	C29A_a—C28A_a—C11A_a	134.8 (10)
C9—C8—C7	121.09 (19)	C33A a—C28A a—C11A a	104.4 (10)

C13—C8—C7	118.21 (19)	C30A_a—C29A_a—C28A_a	120.0
C8—C9—N1	120.02 (19)	C30A a—C29A a—H29A a	120.0
C8—C9—C10	122.7 (2)	C28A a—C29A a—H29A a	120.0
N1—C9—C10	117.18 (18)	C31A a—C30A a—C29A a	120.0
C11A a—C10—C9	116.2 (4)	C31A a—C30A a—H30A a	120.0
C9—C10—C11B b	110.0 (4)	C29A a—C30A a—H30A a	120.0
C11A a—C10—H10A	92.7 (18)	C30A a—C31A a—C32A a	120.0
C9—C10—H10A	111.5 (17)	C30A a—C31A a—H31A a	120.0
C11B b—C10—H10A	117.0 (17)	C32A a—C31A a—H31A a	120.0
C11A a—C10—H10B	116 (2)	C33A a—C32A a—C31A a	120.0
C9—C10—H10B	109 (2)	C33A a—C32A a—H32A a	120.0
C11B b—C10—H10B	98 (2)	C31A a—C32A a—H32A a	120.0
H10A-C10-H10B	111 (3)	$C_{32A} = C_{33A} = C_{28A} = C_{32A}$	120.0
C12— $C11A$ a— $C28A$ a	119.6 (10)	C32A a— $C33A$ a— $H33A$ a	120.0
C12— $C11A$ a— $C10$	117.6 (8)	$C_{28A} = C_{33A} = H_{33A} a$	120.0
$C_{28A} = C_{11A} = C_{10}$	1100(8)	$C_{29B} = C_{28B} = C_{33B} = C_{33B}$	120.0
C_{12} C_{11B} b C_{10}	1200(9)	$C_{29B} = C_{28B} = C_{11B} = C_{1$	120.0 108.9(7)
$C12$ $C11B_b$ $C28B_b$	120.0(9) 114 4 (9)	$C_{33B} = C_{28B} = C_{11B} = C_{11B}$	130.8(7)
C10-C11B - C28B h	101.5(7)	$C_{28B} = C_{29B} = C_{30B} = C_{30B}$	120.0
$C_{11B} = C_{12} = C_{13}$	101.5(7) 116.5(5)	$C_{28B} = C_{29B} = H_{29B} = H_{29B}$	120.0
$C_{11A} = C_{12} = C_{13}$	1220(4)	$C_{20B}_{-0} = C_{29B}_{-0} = H_{29B}_{-0}$	120.0
$C_{11B} = C_{12} = H_{12}$	122.0(4) 125(2)	$C_{31B} = C_{30B} = C_{29B} = C_{29B}$	120.0
$C_{11} = C_{12} = C_{12} = H_{12}$	125(2) 125(2)	$C_{31B} = C_{30B} = H_{30B} = H_{30B}$	120.0
C_{13} C_{12} H_{12}	123(2) 113(2)	$C_{29B} = C_{30B} = H_{30B} = H_{30B}$	120.0
03-013-08	1213(2)	$C_{32B} = C_{31B} = C_{30B} = C_{30B}$	120.0
03-C13-C12	121.5(2) 121.5(2)	$C_{32B} = C_{31B} = H_{31B} = H_{31B}$	120.0
C8-C13-C12	121.3(2) 117.2(2)	$C_{30B} = C_{31B} = H_{31B} = H_{31B}$	120.0
C_{15} C_{14} C_{19}	120.0	$C_{33B} = C_{32B} = C_{31B} = C_{31B}$	120.0
C15 $C14$ $C3A$ a	127.33 (19)	$C_{33B} = C_{32B} = C_{32B} = H_{32B} = h$	120.0
C19 - C14 - C3A a	127.55(19) 112.64(19)	$C_{31B} = C_{32B} = H_{32B} = H_{32B}$	120.0
C15 - C14 - C3B h	96.4 (5)	$C_{32B} = C_{32B} = C_{3$	120.0
C19 - C14 - C3B b	143.5(5)	$C_{32B} = C_{33B} = H_{33B} = H_{33B}$	120.0
C16-C15-C14	120.0	$C_{28B} = C_{33B} = H_{33B} = H_{33B}$	120.0
C16-C15-H15	120.0	$C_{1} = N_{1} = C_{9}$	119 12 (17)
C_{14} C_{15} H_{15}	120.0	C1 - N1 - C26	119.12(17) 121.61(17)
$C_{15} - C_{16} - C_{17}$	120.0	$C_{1} = N_{1} = C_{20}$	121.01(17) 119.15(17)
C_{15} C_{16} H_{16}	120.0	$C_{27} = 0^{2} = H_{20}^{2}$	119.13(17) 111.2(15)
C17 - C16 - H16	120.0	$C_{21} = O_{2} = H_{2}O_{3}$	116(2)
$C_{18}^{18} C_{17}^{17} C_{16}^{16}$	120.0	021 04 1140	110(2)
010-017-010	120.0		
C6-C1-C2-C3B b	-28.8(6)	C2-C3B b-C14-C15	115 5 (6)
N1-C1-C2-C3B b	148.6 (6)	$C_2 - C_3B - C_14 - C_19$	-59.9(10)
C6-C1-C2-C3A a	6.9 (3)	$C_2 - C_3B - C_14 - C_3A a$	-66.1(7)
N1-C1-C2-C3A a	-175.7(2)	C19-C14-C15-C16	0.0
C1-C2-C3A = C4A = 2	-43 6 (3)	C3A = C14 - C15 - C16	-1779(2)
$C_{3B} = C_{2} = C_{3A} = C_{4A} = C_{4A}$	48 4 (7)	$C_{3B} = C_{14} = C_{15} = C_{16}$	-1769(4)
C1-C2-C3A = C14	-168.2(2)	C14-C15-C16-C17	0.0
$C_{3B} = C_{2} = C_{3A} = C_{14}$	-762(8)	C_{15} C_{16} C_{17} C_{18}	0.0
0.05_0 0.02 0.011_0 0.11	, 0.2 (0)		0.0

C2—C3A_a—C4A_a—C5	57.4 (3)	C16—C17—C18—C19	0.0
C14—C3A_a—C4A_a—C5	179.4 (2)	C17—C18—C19—C14	0.0
C1-C2-C3B_b-C14	161.7 (4)	C15—C14—C19—C18	0.0
C3A_a—C2—C3B_b—C14	60.5 (7)	C3A_a-C14-C19-C18	178.23 (18)
C3A a—C4A a—C5—O1	145.7 (3)	C3B b—C14—C19—C18	174.7 (6)
C3A a—C4A a—C5—C6	-37.1 (4)	C7C20C25	24.8 (3)
N1 - C1 - C6 - C5	-162.5(2)	C6—C7—C20—C25	-97.0(2)
$C_{2}-C_{1}-C_{6}-C_{5}$	149(3)	C8 - C7 - C20 - C21	-156.9(2)
N1 - C1 - C6 - C7	13.0(3)	C6-C7-C20-C21	81.3 (2)
C_{2} C_{1} C_{6} C_{7}	-169.60(19)	$C_{25} - C_{20} - C_{21} - O_{4}$	-1792(2)
01 - C5 - C6 - C1	1780(2)	$C_{23} = C_{20} = C_{21} = 04$	25(3)
$C_{1} = C_{2} = C_{1} = C_{1}$	170.0(2)	$C_{1} = C_{20} = C_{21} = C_{4}$	2.3(3)
$C4A_a = C3 = C0 = C1$	0.9(3)	$C_{23} = C_{20} = C_{21} = C_{22}$	-0.9(3)
01 - 05 - 06 - 07	2.5(3)	$C_{1} = C_{20} = C_{21} = C_{22}$	-1/9.2(2)
$C4A_a = C5 = C6 = C7$	-1/4.6(2)	04-021-022-023	-1/9.9 (2)
	-34.4 (3)	C20—C21—C22—C23	1.7 (4)
C5—C6—C7—C8	141.1 (2)	O4—C21—C22—Br1	-1.7 (3)
C1—C6—C7—C20	90.2 (2)	C20—C21—C22—Br1	179.89 (17)
C5—C6—C7—C20	-94.3 (2)	C21—C22—C23—C24	-1.5 (4)
C6—C7—C8—C9	30.6 (3)	Br1—C22—C23—C24	-179.7 (2)
C20—C7—C8—C9	-93.1 (3)	C22—C23—C24—C25	0.4 (5)
C6—C7—C8—C13	-148.5 (2)	C22—C23—C24—Cl1	179.8 (2)
C20—C7—C8—C13	87.8 (2)	C21—C20—C25—C24	-0.2 (4)
C13—C8—C9—N1	173.4 (2)	C7—C20—C25—C24	178.2 (2)
C7—C8—C9—N1	-5.8 (3)	C23—C24—C25—C20	0.4 (4)
C13—C8—C9—C10	-3.4 (4)	Cl1—C24—C25—C20	-179.0(2)
C7—C8—C9—C10	177.5 (2)	N1—C26—C27—O2	-76.8 (3)
		C12—C11A a—C28A a—	
C8—C9—C10—C11A_a	13.4 (9)	C29A_a	-84.2 (16)
N1—C9—C10—C11A_a	-163.4 (9)	C10—C11A_a—C28A_a—	56.4 (14)
_		$C_{29}A_a$	
C8—C9—C10—C11B_b	-13.5 (8)	$C12$ — $C11A_a$ — $C28A_a$ — $C33A_a$	106.7 (17)
		C_{10} C_{114} $a_{-}C_{284}$ a_{-}	
N1—C9—C10—C11B_b	169.7 (7)	C33A_a	-112.6 (9)
C_{0} C_{10} C_{11A} c_{12}	-21.4(17)	C33A_a—C28A_a—C29A_a—	0.0
C9—C10—C11A_a—C12	-21.4 (17)	C30A_a	0.0
C11B b—C10—C11A a—C12	60.2 (15)	C11A_a-C28A_a-C29A_a-	-167.7 (9)
		C30A_a	
C9—C10—C11A_a—C28A_a	-162.9 (10)	C28A_a—C29A_a—C30A_a— C31A_a	0.0
C11B_b—C10—C11A_a—	-81 (2)	C29A_a—C30A_a—C31A_a—	0.0
C28A_a		C32A_a	
C11A_a—C10—C11B_b—C12	-71 (2)	C30A_a—C31A_a—C32A_a— C33A_a	0.0
C9—C10—C11B_b—C12	38.3 (14)	C31A_a—C32A_a—C33A_a— C28A_a	0.0
C11A_a—C10—C11B_b— C28B_b	56.2 (14)	C29A_a—C28A_a—C33A_a— C32A_a	0.0

C9—C10—C11B_b—C28B_b	165.4 (6)	C11A_a—C28A_a—C33A_a— C32A_a	171.0 (6)
C10—C11B_b—C12—C11A_a	65.9 (18)	C12—C11B_b—C28B_b— C29B_b	-143.3 (12)
C28B_b—C11B_b—C12— C11A_a	-54.9 (14)	C10—C11B_b—C28B_b— C29B_b	86.0 (8)
C10-C11B_b-C12-C13	-43.0 (15)	C12—C11B_b—C28B_b— C33B_b	30.3 (17)
C28B_b—C11B_b—C12—C13	-163.8 (7)	C10—C11B_b—C28B_b— C33B_b	-100.3 (7)
C28A_a—C11A_a—C12— C11B_b	71 (2)	C33B_b—C28B_b—C29B_b— C30B_b	0.0
C10—C11A_a—C12—C11B_b	-67.0 (16)	C11B_b—C28B_b—C29B_b— C30B_b	174.5 (6)
C28A_a—C11A_a—C12—C13	158.0 (11)	C28B_b-C29B_b-C30B_b- C31B_b	0.0
C10-C11A_a-C12-C13	20.3 (19)	C29B_b—C30B_b—C31B_b— C32B_b	0.0
C9—C8—C13—O3	-177.3 (3)	C30B_b—C31B_b—C32B_b— C33B_b	0.0
C7—C8—C13—O3	1.9 (4)	C31B_b—C32B_b—C33B_b— C28B_b	0.0
C9—C8—C13—C12	1.0 (4)	C29B_b—C28B_b—C33B_b— C32B_b	0.0
C7—C8—C13—C12	-179.9 (3)	C11B_b—C28B_b—C33B_b— C32B_b	-173.1 (8)
C11B_b-C12-C13-O3	-159.3 (9)	C6-C1-N1-C9	16.0 (3)
C11A a—C12—C13—O3	168.3 (11)	C2-C1-N1-C9	-161.48 (19)
C11B_b-C12-C13-C8	22.4 (10)	C6-C1-N1-C26	-168.0 (2)
C11A_a-C12-C13-C8	-10.0 (12)	C2-C1-N1-C26	14.6 (3)
C4A_a—C3A_a—C14—C15	-52.8 (3)	C8—C9—N1—C1	-19.9 (3)
C2-C3A_a-C14-C15	71.2 (3)	C10-C9-N1-C1	157.0 (2)
C4A_a-C3A_a-C14-C19	129.2 (2)	C8—C9—N1—C26	163.9 (2)
C2-C3A_a-C14-C19	-106.9 (2)	C10—C9—N1—C26	-19.1 (3)
C4A_a—C3A_a—C14—C3B b	-54.9 (7)	C27—C26—N1—C1	98.1 (2)
C2—C3A_a—C14—C3B_b	69.1 (7)	C27—C26—N1—C9	-85.8 (2)

Hydrogen-bond geometry (Å, °)

Cg6, Cg7 and Cg9 are the centroids of the C28B_B-C33B_B, C14-C19 and C28A_A-C33A_A phenyl rings, respectively.

D—H···A	D—H	$H \cdots A$	$D^{\dots}A$	D—H··· A
02—H2 <i>O</i> …O1 ⁱ	0.87 (2)	1.93 (2)	2.782 (3)	167 (5)
O4—H4 <i>O</i> …O1	0.83 (3)	1.84 (3)	2.632 (2)	161 (3)
C10—H10A····O3 ⁱⁱ	0.97 (2)	2.54 (2)	3.211 (3)	126 (2)
C31 <i>B_b</i> —H31 <i>B_b</i> ···Cl1 ⁱⁱⁱ	0.93	2.76	3.530(7)	141
C26—H26 <i>B</i> ···O3 ⁱⁱ	0.97	2.57	3.537 (3)	173
С16—Н16…Сдб ^і	0.93	2.89	3.713 (4)	149

C16—H16···Cg^{9iv} 0.93 2.86 3.718 (4) 154 C27—H27B···Cg7^v 0.97 2.71 3.574 (3) 149

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) *x*-1, -*y*+1/2, *z*-1/2; (v) -*x*, -*y*+1, -*z*.