metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m222-m223

Di­aqua­bis­­(ethyl­enedi­amine-κ2N,N′)copper(II) bis­­(sulfamerazinate)

aLaboratoire des Structures, Propriétés et Interactions Interatomiques, LASPI2A, Université "Abbes Laghrour", Khenchela 40.000, Algeria, and bUniversité de Lyon, Laboratoire des Multimatériaux et Interfaces (LMI) UMR, 5615 CNRS Université Claude Bernard Lyon 1, Avenue du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: amani_direm@yahoo.fr

Edited by C. Näther, Universität Kiel, Germany (Received 3 May 2014; accepted 9 May 2014; online 17 May 2014)

The asymmetric unit of the title compound, [Cu(C2H8N2)2(H2O)2](C11H11N4O2S)2, contains one sulfamerazinate anion in a general position and one half-cation that is located on a center of inversion. The CuII cation shows a strong Jahn–Teller distortion. It is coordinated by four N atoms of two ethyl­enedi­amine ligands in the basal plane and two O atoms at much longer distances in the axial positions in a bipyramidal coordination. In the crystal, the building blocks are connected by N—H⋯N, O—H⋯N, N—H⋯O and O—H⋯O hydrogen bonding into a two-dimensional network parallel to (001).

Related literature

For the anti­bacterial activity of sulfonamides, see: Anand (1980[Anand, N. (1980). Sulfonamides and sulfones. In Burger's Medicinal Chemistry, edited by M. E. Wolff, pp. 1-40. New York: Wiley Interscience.]); Kratz et al. (2000[Kratz, W., Abbas, B. & Linke, I. (2000). Arzneimittelwirkstoffe in der Umwelt. Landesumweltamt Brandenburg, Abteilung: Okologie und Umweltanalytik.]); Grave et al. (2010[Grave, K., Torren-Edo, J. & Mackay, D. (2010). J. Chemom. 65, 2037-2040.]). For uses of sulfamerazine, see: Murphy et al. (1943[Murphy, F. D., Clark, J. K. & Flippen, H. F. (1943). Am. J. Med. Sci. 205, 717-726.]); Clark et al. (1943[Clark, J. K., Flippen, H. F. & Murphy, F. D. (1943). Am. J. Med. Sci. 205, 846-851.]); Earle (1944[Earle, D. P. (1944). J. Clin. Invest. 23, 914-920.]); Forbes et al. (1946[Forbes, G. B., Perley, A. & Dehlinger, J. (1946). J. Pediatr. 28, 24-36.]). The crystal structure of sulfamerazine was reported by Acharya et al. (1982[Acharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369-376.]). For a related compound in which sulfa­thia­zole acts as a deproton­ated counter-ion, see: Anacona et al. (2002[Anacona, J. R., Ramos, N., Diaz-Delgado, G. & Roque, E. M. (2002). J. Coord. Chem. 55, 901-908.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H8N2)2(H2O)2](C11H11N4O2S)2

  • Mr = 746.41

  • Triclinic, [P \overline 1]

  • a = 7.5429 (4) Å

  • b = 8.1800 (5) Å

  • c = 14.8434 (8) Å

  • α = 75.299 (5)°

  • β = 82.800 (5)°

  • γ = 78.873 (5)°

  • V = 866.40 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.41 × 0.36 × 0.17 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.723, Tmax = 0.869

  • 4738 measured reflections

  • 4020 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.05

  • 4020 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O2i 0.97 2.09 3.022 (3) 162
O1W—H1W⋯O1 0.85 2.07 2.816 (2) 145
N1—H1NB⋯O1 0.97 2.41 3.219 (2) 140
O1W—H2W⋯N11ii 0.95 1.92 2.858 (2) 171
N2—H2NA⋯O2ii 0.97 2.33 3.189 (3) 147
N2—H2NA⋯N11ii 0.97 2.47 3.319 (3) 145
N2—H2NB⋯O2iii 0.97 2.42 3.277 (3) 147
N14—H14A⋯N12iv 0.93 2.09 3.003 (3) 166
N14—H14B⋯O1v 0.95 2.21 2.993 (3) 140
N14—H14B⋯N13v 0.95 2.44 3.215 (3) 139
Symmetry codes: (i) -x+2, -y, -z; (ii) x-1, y, z; (iii) -x+1, -y, -z; (iv) x-1, y+1, z; (v) x, y+1, z.

Data collection: GEMINI (Oxford Diffraction, 2006[Oxford Diffraction (2006). GEMINI and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). GEMINI and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

It is well known that many sulfonamide derivatives possess antibacterial activity (Anand, 1980; Kratz et al., 2000; Grave et al., 2010) including sulfamerazine which is widely used to treat susceptible microbial infections (Murphy et al., 1943; Clark et al., 1943). Faster absorption, low overall excretion rate by the kidneys, and an equal therapeutic and toxic effect of sulfamerazine compared to other sulfonamide drugs, such as sulfadiazine and sulfathiazole, have been claimed for its wider usage (Earle, 1944; Forbes et al., 1946).

The first crystal structure of sulfamerazine have been reported by (Acharya et al., 1982). The presence of several potential donor sites, namely the amino, pyrimidine and sulfonamide N atoms and the sulfonyl O atoms, make this ligand a versatile complexing agent.

As part of our efforts to investigate metal(II) complexes based on sulfonamides, we report herein the crystal structure of the new copper(II) complex: Diaquabis(ethylenediamine-κ2 N,N')copper(II) bis(sulfamerazinate).

The asymmetric unit of the title compound contains one sulfamerazinate counter-ion and a half [Cu(en)2(H2O)2]2+ cation (en = ethylenediamine) (Fig. 1). The metal ion is located in a ML6 environment and coordinated by four N atoms of two ethylenediamine ligands and two O atoms of two water molecules. The four N atoms of the ligands in the equatorial plane form a square-planar arrangement, while the 6-fold coordination is completed by the two water O atoms in the axial positions. The apical Cu—O bridging separation is 2.513 (2) Å while the equatorial Cu—N bridging bond lengths are 2.0168 (19) Å and 2.0016 (18) Å, which is typical for a Jahn-Teller distortion. A sulfamerazine anion that is deprotonated at the N11 N atom is present in the structure (Fig. 1). To the best of our knowledge, a search in the Cambridge Structural Database reveal, that this is the first crystal structure where a sulfamerazinate anion act as a counter ion. A similar situation is observed in [Cu(en)2(OH2)2](Stz)2·2H2O (Anacona et al., 2002) where a sulfathiazole acts as a deprotonated counter ion too.

In the crystal strcuture of the title compound every complex cation is linked via O—H···N, N—H···O and O—H···O hydrogen bonding to the counter cations, while the cations are interconnected via the N—H···N interaction, which lead to the formation of a two dimensional network (Fig. 2).

Related literature top

For the antibacterial activity of sulfonamides, see: Anand (1980); Kratz et al. (2000); Grave et al. (2010). For uses of sulfamerazine, see: Murphy et al. (1943); Clark et al. (1943); Earle (1944); Forbes et al. (1946). The crystal structure of sulfamerazine was reported by Acharya et al. (1982). For [Cu(en)2(OH2)2](Stz)2·2H2O in which sulfathiazole acts as a deprotonated counter-ion, see: Anacona et al. (2002).

Experimental top

The single crystals of [Cu(C2H8N2)2(H2O)2](C11H12N4SO2)2 were formed in a methanolic solution (50 ml) of Cu(CH3CO2)2 (0.362 g, 2 mmol) and sulfamerazine (1.057 g, 4 mmol) by adding ethylenediamine (0.5 ml, 7.3 mmol). The precipitate obtained immediately was filtred out and the resulting filtrate was left to slowly evaporate at room temperature which lead to the formation of blue single crystals suitable for X-Ray diffraction.

Refinement top

All C-H and all N-H H atoms of the ethylenediamine molecules were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropic with [Uiso(H) = 1.2 Ueq (C,N)] (1.5 for methyl H atoms) using a riding odel with C—H = 0.93, 0.96 and 0.97 Å (for aromatic, methyl and methylene H atoms and N—H = 0.97 Å for amino H atoms. The N-H and the O-H water H atoms were located in difference map and refined with varying coordinates and fixed isotropic displacement parameters.

Computing details top

Data collection: GEMINI (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, shown through the a axis, with hydrogen bonding drawn as dashed lines.
Diaquabis(ethylenediamine-κ2N,N')copper(II) bis[(4-aminophenylsulfonyl)(4-methylpyrimidin-2-yl)azanide] top
Crystal data top
[Cu(C2H8N2)2(H2O)2](C11H11N4O2S)2Z = 1
Mr = 746.41F(000) = 391
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.5429 (4) ÅCell parameters from 3709 reflections
b = 8.1800 (5) Åθ = 3–29°
c = 14.8434 (8) ŵ = 0.81 mm1
α = 75.299 (5)°T = 293 K
β = 82.800 (5)°Block, blue
γ = 78.873 (5)°0.41 × 0.36 × 0.17 mm
V = 866.40 (9) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
4020 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω/2θ scansθmax = 29.3°, θmin = 2.9°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 107
Tmin = 0.723, Tmax = 0.869k = 911
4738 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.4528P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4020 reflectionsΔρmax = 0.33 e Å3
215 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
[Cu(C2H8N2)2(H2O)2](C11H11N4O2S)2γ = 78.873 (5)°
Mr = 746.41V = 866.40 (9) Å3
Triclinic, P1Z = 1
a = 7.5429 (4) ÅMo Kα radiation
b = 8.1800 (5) ŵ = 0.81 mm1
c = 14.8434 (8) ÅT = 293 K
α = 75.299 (5)°0.41 × 0.36 × 0.17 mm
β = 82.800 (5)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4020 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
3361 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.869Rint = 0.019
4738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
4020 reflectionsΔρmin = 0.38 e Å3
215 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A·M., 1986. J. Appl. Cryst. 105–107.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000.03130 (12)
S10.93674 (7)0.08503 (7)0.18420 (3)0.03012 (13)
O10.7864 (2)0.0053 (2)0.18937 (11)0.0387 (4)
O21.0053 (2)0.1546 (2)0.08903 (10)0.0428 (4)
C200.8897 (3)0.5351 (3)0.25274 (16)0.0355 (5)
H200.96150.61890.24510.043*
N130.9256 (2)0.0906 (2)0.37617 (12)0.0347 (4)
C210.9576 (3)0.3893 (3)0.22151 (15)0.0346 (5)
H211.07430.37590.19240.041*
C160.8532 (3)0.2613 (3)0.23311 (14)0.0291 (4)
O1W0.4227 (2)0.1071 (3)0.14692 (12)0.0552 (5)
C120.9149 (3)0.1728 (3)0.46614 (16)0.0435 (6)
C111.0858 (3)0.1138 (3)0.32650 (15)0.0310 (4)
N111.1063 (2)0.0306 (2)0.23427 (12)0.0325 (4)
N121.2372 (3)0.2157 (3)0.36031 (14)0.0469 (5)
C150.7356 (4)0.1427 (5)0.5202 (2)0.0659 (8)
H15A0.68360.02350.50290.099*
H15B0.7520.17510.58580.099*
H15C0.6560.21020.50660.099*
C131.0634 (4)0.2794 (4)0.5060 (2)0.0652 (9)
H131.05720.33710.56860.078*
C141.2192 (4)0.2967 (4)0.4501 (2)0.0658 (9)
H141.31980.36990.47610.079*
C170.6811 (3)0.2811 (3)0.27905 (14)0.0323 (5)
H170.61230.19420.28950.039*
N140.6421 (3)0.7043 (3)0.32650 (17)0.0488 (5)
C190.7133 (3)0.5595 (3)0.29608 (15)0.0328 (5)
C180.6118 (3)0.4279 (3)0.30924 (15)0.0343 (5)
H180.49550.440.33890.041*
N10.6743 (3)0.2106 (2)0.05258 (13)0.0382 (4)
H1NA0.78390.21930.0110.046*
H1NB0.70670.20590.1130.046*
N20.3086 (3)0.1504 (2)0.04393 (14)0.0394 (4)
H2NA0.20990.09530.08020.047*
H2NB0.26010.16960.00930.047*
C10.5849 (4)0.3587 (3)0.06228 (18)0.0455 (6)
H1A0.64840.45860.10350.055*
H1B0.58570.3840.00180.055*
C20.3928 (4)0.3160 (3)0.10211 (18)0.0476 (6)
H2A0.32540.40550.10170.057*
H2B0.39160.30710.16610.057*
H14A0.51690.73520.32640.05*
H14B0.70110.8010.31190.05*
H1W0.51010.07950.1820.05*
H2W0.32320.05990.1820.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0291 (2)0.0302 (2)0.0334 (2)0.00225 (15)0.00634 (15)0.00569 (15)
S10.0257 (3)0.0345 (3)0.0295 (3)0.0024 (2)0.0030 (2)0.0079 (2)
O10.0305 (8)0.0411 (9)0.0488 (9)0.0061 (7)0.0087 (7)0.0156 (7)
O20.0432 (9)0.0525 (10)0.0277 (8)0.0025 (8)0.0009 (7)0.0066 (7)
C200.0292 (11)0.0323 (12)0.0452 (12)0.0109 (9)0.0030 (9)0.0056 (10)
N130.0300 (9)0.0369 (10)0.0354 (10)0.0041 (8)0.0007 (8)0.0071 (8)
C210.0246 (10)0.0390 (12)0.0381 (12)0.0075 (9)0.0004 (9)0.0051 (9)
C160.0275 (10)0.0282 (10)0.0294 (10)0.0025 (8)0.0047 (8)0.0035 (8)
O1W0.0365 (9)0.0874 (14)0.0414 (10)0.0189 (9)0.0090 (7)0.0056 (9)
C120.0428 (13)0.0493 (15)0.0367 (12)0.0103 (11)0.0000 (10)0.0068 (11)
C110.0270 (10)0.0300 (11)0.0366 (11)0.0028 (8)0.0029 (8)0.0099 (9)
N110.0231 (9)0.0370 (10)0.0342 (9)0.0004 (7)0.0007 (7)0.0066 (8)
N120.0329 (10)0.0558 (13)0.0437 (12)0.0082 (9)0.0079 (9)0.0061 (10)
C150.0537 (17)0.087 (2)0.0487 (16)0.0136 (16)0.0144 (13)0.0092 (15)
C130.0594 (18)0.082 (2)0.0379 (14)0.0001 (16)0.0060 (13)0.0082 (14)
C140.0506 (17)0.078 (2)0.0508 (17)0.0136 (15)0.0142 (13)0.0038 (15)
C170.0303 (11)0.0299 (11)0.0362 (11)0.0091 (9)0.0002 (9)0.0053 (9)
N140.0372 (11)0.0357 (11)0.0781 (15)0.0080 (9)0.0029 (10)0.0239 (10)
C190.0316 (11)0.0300 (11)0.0357 (11)0.0049 (9)0.0051 (9)0.0050 (9)
C180.0252 (10)0.0361 (12)0.0397 (12)0.0047 (9)0.0017 (9)0.0075 (9)
N10.0359 (10)0.0388 (11)0.0353 (10)0.0005 (8)0.0066 (8)0.0037 (8)
N20.0352 (10)0.0417 (11)0.0429 (11)0.0046 (8)0.0037 (8)0.0141 (9)
C10.0549 (15)0.0320 (12)0.0446 (14)0.0010 (11)0.0043 (11)0.0047 (10)
C20.0555 (16)0.0379 (14)0.0468 (14)0.0136 (12)0.0009 (12)0.0034 (11)
Geometric parameters (Å, º) top
Cu1—N12.0016 (18)C15—H15B0.96
Cu1—N1i2.0016 (18)C15—H15C0.96
Cu1—N22.0168 (19)C13—C141.357 (4)
Cu1—N2i2.0168 (19)C13—H130.93
S1—O21.4524 (16)C14—H140.93
S1—O11.4530 (16)C17—C181.374 (3)
S1—N111.5806 (17)C17—H170.93
S1—C161.752 (2)N14—C191.364 (3)
C20—C211.373 (3)N14—H14A0.9300
C20—C191.404 (3)N14—H14B0.9500
C20—H200.93C19—C181.399 (3)
N13—C121.334 (3)C18—H180.93
N13—C111.341 (3)N1—C11.465 (3)
C21—C161.393 (3)N1—H1NA0.97
C21—H210.93N1—H1NB0.97
C16—C171.389 (3)N2—C21.481 (3)
O1W—H1W0.8500N2—H2NA0.97
O1W—H2W0.9500N2—H2NB0.97
C12—C131.376 (4)C1—C21.505 (4)
C12—C151.494 (4)C1—H1A0.97
C11—N121.347 (3)C1—H1B0.97
C11—N111.370 (3)C2—H2A0.97
N12—C141.332 (3)C2—H2B0.97
C15—H15A0.96
N1—Cu1—N1i180N12—C14—C13124.2 (2)
N1—Cu1—N285.23 (8)N12—C14—H14117.9
N1i—Cu1—N294.77 (8)C13—C14—H14117.9
N1—Cu1—N2i94.77 (8)C18—C17—C16120.5 (2)
N1i—Cu1—N2i85.23 (8)C18—C17—H17119.7
N2—Cu1—N2i180C16—C17—H17119.7
O2—S1—O1113.23 (10)C19—N14—H14A115.00
O2—S1—N11105.46 (9)C19—N14—H14B122.00
O1—S1—N11113.64 (10)H14A—N14—H14B112.00
O2—S1—C16106.20 (10)N14—C19—C18120.2 (2)
O1—S1—C16106.87 (10)N14—C19—C20122.0 (2)
N11—S1—C16111.27 (10)C18—C19—C20117.8 (2)
C21—C20—C19121.0 (2)C17—C18—C19121.1 (2)
C21—C20—H20119.5C17—C18—H18119.5
C19—C20—H20119.5C19—C18—H18119.5
C12—N13—C11117.89 (19)C1—N1—Cu1107.55 (14)
C20—C21—C16120.5 (2)C1—N1—H1NA110.2
C20—C21—H21119.7Cu1—N1—H1NA110.2
C16—C21—H21119.7C1—N1—H1NB110.2
C17—C16—C21119.0 (2)Cu1—N1—H1NB110.2
C17—C16—S1121.54 (16)H1NA—N1—H1NB108.5
C21—C16—S1119.33 (16)C2—N2—Cu1108.34 (14)
H1W—O1W—H2W107.00C2—N2—H2NA110
N13—C12—C13120.8 (2)Cu1—N2—H2NA110
N13—C12—C15116.8 (2)C2—N2—H2NB110
C13—C12—C15122.4 (2)Cu1—N2—H2NB110
N13—C11—N12124.9 (2)H2NA—N2—H2NB108.4
N13—C11—N11120.69 (18)N1—C1—C2108.2 (2)
N12—C11—N11114.39 (19)N1—C1—H1A110.1
C11—N11—S1119.66 (14)C2—C1—H1A110.1
C14—N12—C11115.0 (2)N1—C1—H1B110.1
C12—C15—H15A109.5C2—C1—H1B110.1
C12—C15—H15B109.5H1A—C1—H1B108.4
H15A—C15—H15B109.5N2—C2—C1108.23 (19)
C12—C15—H15C109.5N2—C2—H2A110.1
H15A—C15—H15C109.5C1—C2—H2A110.1
H15B—C15—H15C109.5N2—C2—H2B110.1
C14—C13—C12117.2 (2)C1—C2—H2B110.1
C14—C13—H13121.4H2A—C2—H2B108.4
C12—C13—H13121.4
C19—C20—C21—C160.7 (3)C16—S1—N11—C1164.56 (19)
C20—C21—C16—C171.8 (3)N13—C11—N12—C140.1 (4)
C20—C21—C16—S1174.88 (16)N11—C11—N12—C14179.7 (2)
O2—S1—C16—C17129.97 (17)N13—C12—C13—C140.0 (5)
O1—S1—C16—C178.82 (19)C15—C12—C13—C14179.9 (3)
N11—S1—C16—C17115.76 (17)C11—N12—C14—C131.0 (5)
O2—S1—C16—C2146.61 (18)C12—C13—C14—N121.0 (5)
O1—S1—C16—C21167.75 (16)C21—C16—C17—C182.7 (3)
N11—S1—C16—C2167.66 (18)S1—C16—C17—C18173.90 (16)
C11—N13—C12—C130.8 (4)C21—C20—C19—N14179.1 (2)
C11—N13—C12—C15179.1 (2)C21—C20—C19—C182.2 (3)
C12—N13—C11—N120.8 (3)C16—C17—C18—C191.1 (3)
C12—N13—C11—N11178.8 (2)N14—C19—C18—C17180.0 (2)
N13—C11—N11—S13.7 (3)C20—C19—C18—C171.3 (3)
N12—C11—N11—S1176.63 (17)Cu1—N1—C1—C243.1 (2)
O2—S1—N11—C11179.29 (17)Cu1—N2—C2—C135.0 (2)
O1—S1—N11—C1156.1 (2)N1—C1—C2—N252.3 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O2ii0.972.093.022 (3)162
O1W—H1W···O10.852.072.816 (2)145
N1—H1NB···O10.972.413.219 (2)140
O1W—H2W···N11iii0.951.922.858 (2)171
N2—H2NA···O2iii0.972.333.189 (3)147
N2—H2NA···N11iii0.972.473.319 (3)145
N2—H2NB···O2i0.972.423.277 (3)147
N14—H14A···N12iv0.932.093.003 (3)166
N14—H14B···O1v0.952.212.993 (3)140
N14—H14B···N13v0.952.443.215 (3)139
C17—H17···O10.932.552.915 (3)104
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x1, y+1, z; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O2i0.972.093.022 (3)162
O1W—H1W···O10.852.072.816 (2)145
N1—H1NB···O10.972.413.219 (2)140
O1W—H2W···N11ii0.951.922.858 (2)171
N2—H2NA···O2ii0.972.333.189 (3)147
N2—H2NA···N11ii0.972.473.319 (3)145
N2—H2NB···O2iii0.972.423.277 (3)147
N14—H14A···N12iv0.932.093.003 (3)166
N14—H14B···O1v0.952.212.993 (3)140
N14—H14B···N13v0.952.443.215 (3)139
Symmetry codes: (i) x+2, y, z; (ii) x1, y, z; (iii) x+1, y, z; (iv) x1, y+1, z; (v) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Université "Abbes Laghrour", Khenchela, Algeria for financial support.

References

First citationAcharya, K. R., Kuchela, K. N. & Kartha, G. (1982). J. Crystallogr. Spectrosc. Res. 12, 369–376.  CAS Google Scholar
First citationAnacona, J. R., Ramos, N., Diaz-Delgado, G. & Roque, E. M. (2002). J. Coord. Chem. 55, 901–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnand, N. (1980). Sulfonamides and sulfones. In Burger's Medicinal Chemistry, edited by M. E. Wolff, pp. 1–40. New York: Wiley Interscience.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClark, J. K., Flippen, H. F. & Murphy, F. D. (1943). Am. J. Med. Sci. 205, 846–851.  CrossRef CAS Google Scholar
First citationEarle, D. P. (1944). J. Clin. Invest. 23, 914–920.  CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForbes, G. B., Perley, A. & Dehlinger, J. (1946). J. Pediatr. 28, 24–36.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGrave, K., Torren-Edo, J. & Mackay, D. (2010). J. Chemom. 65, 2037–2040.  CAS Google Scholar
First citationKratz, W., Abbas, B. & Linke, I. (2000). Arzneimittelwirkstoffe in der Umwelt. Landesumweltamt Brandenburg, Abteilung: Okologie und Umweltanalytik.  Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationMurphy, F. D., Clark, J. K. & Flippen, H. F. (1943). Am. J. Med. Sci. 205, 717–726.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). GEMINI and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m222-m223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds