organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo­phen­yl)-3-(3-chloro­propan­oyl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. , Malaysia, bLow Carbon Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. , Malaysia, and cFaculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D.E. , Malaysia
*Correspondence e-mail: adibatul@salam.uitm.edu.my

(Received 25 April 2014; accepted 15 May 2014; online 21 May 2014)

The title compound, C10H10BrClN2OS, adopts a transcis conformation with respect to the position of the 3-chloro­propanoyl and 4-bromo­phenyl groups, respectively, against the thiono C=S bond across their C—N bonds. The benzene ring makes a dihedral angle of 9.55 (16)° with the N2CS thio­urea moiety. Intra­molecular N—H⋯O and C—H⋯S hydrogen bonds occur. In the crystal, mol­ecules are linked into chains along the c-axis direction by N—H⋯S, C—H⋯S and C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of related compounds, see: Othman et al. (2010[Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10BrClN2OS

  • Mr = 321.62

  • Triclinic, [P \overline 1]

  • a = 5.3899 (4) Å

  • b = 8.3705 (5) Å

  • c = 13.7369 (8) Å

  • α = 91.209 (2)°

  • β = 96.417 (2)°

  • γ = 92.731 (2)°

  • V = 614.96 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 296 K

  • 0.46 × 0.45 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.280, Tmax = 0.606

  • 11958 measured reflections

  • 2405 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.129

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.11

  • 2405 reflections

  • 154 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.87 (3) 1.90 (3) 2.623 (4) 140 (4)
C6—H6⋯S1 0.93 2.56 3.222 (4) 128
N1—H1⋯S1i 0.87 (2) 2.53 (2) 3.376 (3) 166 (4)
C2—H2B⋯S1i 0.97 2.79 3.707 (4) 157
C9—H9⋯O1ii 0.93 2.52 3.444 (5) 172
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+2.

Data collection: SMART (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is analogous to the previously reported N-(3-chloropropanoyl)-N'-phenylthiourea (Othman et al., 2010) except the bromine atom is at position-4 of the phenyl ring (Fig. 1). The molecule has trans-cis configuration with respect to the position of the 3-chloropropanoyl and 4-bromophenyl groups, respectively, against the thiono CS bond across their C4–N1 and C4–N2 bonds. The whole molecule is not planar. The (S1/N1/N2/C2/C3/C4) thiourea moiety and the benzene ring (C5-C10) are planar with maximum deviation of 0.036 (4) Å for C3 atom from the least square plane of the thiourea moiety. The benzene ring makes dihedral angle with the thiourea moiety of 9.55 (16)°, very big reduction compared to the analog, N-(3-chloropropanoyl)-N'-phenylthiourea of 82.62 (10)°. The bond lengths and angles are in normal ranges (Allen et al., 1987). There are N2–H2···O1 and C6–H6···S1 intramolecular hydrogen bonds. In the crystal packing, the molecules are linked by N1–H1···S1i, C2–H2B···S1i and C9–H9···O1ii intermolecular hydrogen bonds form one-dimensional chains along the c axis (Fig. 2). Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+2.

Related literature top

For the crystal structures of related compounds, see: Othman et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

An acetone solution (30 mL) of 4-bromoaniline (0.01 mol, 1.72 g) was added dropwise into a two-necked round-bottomed flask containing 3-chloropropanoylisothiocyanate (0.01 mol). The mixture was refluxed for about 4 h, filtered into a beaker and left to evaporate at room temperature. The filtrate gave colourless crystals after 5 days on slow evaporation of the solvent (yield 79%).

Refinement top

The C based H atoms were positioned geometrically with C–H = 0.93-0.97 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The amino H atoms ware located in difference Fourier map and refined freely with using SHELXL instruction 'DFIX 0.87 0.01'.

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. The H atoms are presented as a small spheres of arbitrary radius. The dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. The dashes lines indicate hydrogen bonds.
1-(4-Bromophenyl)-3-(3-chloropropanoyl)thiourea top
Crystal data top
C10H10BrClN2OSZ = 2
Mr = 321.62F(000) = 320
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3899 (4) ÅCell parameters from 7910 reflections
b = 8.3705 (5) Åθ = 2.9–25.9°
c = 13.7369 (8) ŵ = 3.71 mm1
α = 91.209 (2)°T = 296 K
β = 96.417 (2)°Block, colourless
γ = 92.731 (2)°0.46 × 0.45 × 0.15 mm
V = 614.96 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2405 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.129
Detector resolution: 83.66 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.280, Tmax = 0.606l = 1616
11958 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5365P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2405 reflectionsΔρmax = 0.44 e Å3
154 parametersΔρmin = 0.67 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.067 (5)
Crystal data top
C10H10BrClN2OSγ = 92.731 (2)°
Mr = 321.62V = 614.96 (7) Å3
Triclinic, P1Z = 2
a = 5.3899 (4) ÅMo Kα radiation
b = 8.3705 (5) ŵ = 3.71 mm1
c = 13.7369 (8) ÅT = 296 K
α = 91.209 (2)°0.46 × 0.45 × 0.15 mm
β = 96.417 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2405 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2053 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.606Rint = 0.129
11958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.44 e Å3
2405 reflectionsΔρmin = 0.67 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28574 (8)0.63531 (5)1.11594 (3)0.0559 (2)
Cl10.8887 (2)1.50961 (14)0.64873 (11)0.0707 (4)
S10.40834 (18)0.83621 (11)0.60404 (6)0.0447 (3)
O11.0855 (5)1.1309 (3)0.74807 (18)0.0481 (7)
N10.7900 (5)1.0463 (3)0.6239 (2)0.0348 (6)
N20.7069 (6)0.9295 (4)0.7667 (2)0.0387 (7)
C11.1700 (7)1.4130 (4)0.6359 (3)0.0457 (9)
H1A1.26901.47490.59390.055*
H1B1.26671.40730.69960.055*
C21.1149 (7)1.2461 (4)0.5923 (3)0.0429 (9)
H2A1.26891.20240.57590.051*
H2B1.00221.25090.53240.051*
C30.9979 (7)1.1373 (4)0.6630 (3)0.0371 (8)
C40.6423 (6)0.9385 (4)0.6716 (2)0.0313 (7)
C50.5977 (6)0.8495 (4)0.8422 (2)0.0332 (7)
C60.3732 (7)0.7605 (5)0.8312 (3)0.0450 (9)
H60.28380.74470.76950.054*
C70.2820 (7)0.6947 (5)0.9131 (3)0.0452 (9)
H70.13110.63470.90660.054*
C80.4156 (7)0.7187 (4)1.0035 (3)0.0382 (8)
C90.6388 (7)0.8042 (5)1.0150 (3)0.0485 (9)
H90.72870.81931.07660.058*
C100.7283 (7)0.8680 (5)0.9334 (3)0.0481 (10)
H100.88180.92510.94050.058*
H10.742 (7)1.058 (5)0.5620 (10)0.041 (10)*
H20.835 (5)0.990 (4)0.791 (3)0.057 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0605 (3)0.0655 (3)0.0444 (3)0.0072 (2)0.0209 (2)0.0123 (2)
Cl10.0667 (7)0.0585 (7)0.0908 (9)0.0081 (6)0.0226 (6)0.0126 (6)
S10.0513 (6)0.0445 (5)0.0338 (5)0.0216 (4)0.0061 (4)0.0080 (4)
O10.0475 (15)0.0584 (16)0.0349 (14)0.0235 (13)0.0007 (11)0.0039 (12)
N10.0375 (15)0.0362 (14)0.0288 (14)0.0128 (12)0.0007 (12)0.0049 (12)
N20.0387 (16)0.0433 (16)0.0315 (15)0.0178 (13)0.0003 (12)0.0068 (12)
C10.043 (2)0.0406 (19)0.052 (2)0.0126 (16)0.0040 (17)0.0059 (17)
C20.041 (2)0.046 (2)0.041 (2)0.0149 (16)0.0104 (16)0.0050 (16)
C30.0387 (19)0.0356 (17)0.0367 (19)0.0070 (14)0.0072 (15)0.0016 (14)
C40.0354 (17)0.0270 (15)0.0308 (16)0.0041 (13)0.0025 (13)0.0032 (12)
C50.0355 (17)0.0333 (16)0.0303 (16)0.0046 (14)0.0031 (13)0.0057 (13)
C60.045 (2)0.051 (2)0.0366 (19)0.0174 (17)0.0007 (15)0.0018 (16)
C70.042 (2)0.050 (2)0.042 (2)0.0175 (17)0.0049 (16)0.0050 (17)
C80.0416 (19)0.0400 (18)0.0353 (18)0.0004 (15)0.0137 (15)0.0062 (14)
C90.046 (2)0.065 (2)0.0323 (18)0.0089 (19)0.0012 (16)0.0070 (17)
C100.039 (2)0.066 (2)0.036 (2)0.0209 (18)0.0008 (15)0.0054 (18)
Geometric parameters (Å, º) top
Br1—C81.898 (3)C2—C31.514 (4)
Cl1—C11.776 (4)C2—H2A0.9700
S1—C41.669 (3)C2—H2B0.9700
O1—C31.213 (4)C5—C101.369 (5)
N1—C31.375 (4)C5—C61.382 (5)
N1—C41.397 (4)C6—C71.391 (5)
N1—H10.869 (10)C6—H60.9300
N2—C41.319 (4)C7—C81.370 (5)
N2—C51.414 (4)C7—H70.9300
N2—H20.864 (10)C8—C91.362 (5)
C1—C21.511 (5)C9—C101.376 (5)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—H100.9300
C3—N1—C4128.1 (3)N2—C4—N1114.9 (3)
C3—N1—H1117 (2)N2—C4—S1127.4 (2)
C4—N1—H1115 (2)N1—C4—S1117.7 (2)
C4—N2—C5133.1 (3)C10—C5—C6119.1 (3)
C4—N2—H2116 (3)C10—C5—N2115.2 (3)
C5—N2—H2111 (3)C6—C5—N2125.7 (3)
C2—C1—Cl1110.8 (3)C5—C6—C7119.4 (3)
C2—C1—H1A109.5C5—C6—H6120.3
Cl1—C1—H1A109.5C7—C6—H6120.3
C2—C1—H1B109.5C8—C7—C6119.7 (3)
Cl1—C1—H1B109.5C8—C7—H7120.1
H1A—C1—H1B108.1C6—C7—H7120.1
C1—C2—C3111.3 (3)C9—C8—C7121.3 (3)
C1—C2—H2A109.4C9—C8—Br1118.9 (3)
C3—C2—H2A109.4C7—C8—Br1119.7 (3)
C1—C2—H2B109.4C8—C9—C10118.6 (4)
C3—C2—H2B109.4C8—C9—H9120.7
H2A—C2—H2B108.0C10—C9—H9120.7
O1—C3—N1123.0 (3)C5—C10—C9121.8 (3)
O1—C3—C2121.5 (3)C5—C10—H10119.1
N1—C3—C2115.5 (3)C9—C10—H10119.1
Cl1—C1—C2—C368.4 (4)C10—C5—C6—C71.4 (6)
C4—N1—C3—O12.0 (6)N2—C5—C6—C7176.8 (4)
C4—N1—C3—C2178.8 (3)C5—C6—C7—C80.1 (6)
C1—C2—C3—O147.9 (5)C6—C7—C8—C90.9 (6)
C1—C2—C3—N1132.9 (3)C6—C7—C8—Br1177.8 (3)
C5—N2—C4—N1173.3 (4)C7—C8—C9—C100.4 (6)
C5—N2—C4—S16.9 (6)Br1—C8—C9—C10178.3 (3)
C3—N1—C4—N23.1 (5)C6—C5—C10—C91.9 (7)
C3—N1—C4—S1176.7 (3)N2—C5—C10—C9176.5 (4)
C4—N2—C5—C10178.7 (4)C8—C9—C10—C51.0 (7)
C4—N2—C5—C63.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.87 (3)1.90 (3)2.623 (4)140 (4)
C6—H6···S10.932.563.222 (4)128
N1—H1···S1i0.87 (2)2.53 (2)3.376 (3)166 (4)
C2—H2B···S1i0.972.793.707 (4)157
C9—H9···O1ii0.932.523.444 (5)172
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.87 (3)1.90 (3)2.623 (4)140 (4)
C6—H6···S10.932.563.222 (4)128
N1—H1···S1i0.870 (16)2.53 (2)3.376 (3)166 (4)
C2—H2B···S1i0.972.793.707 (4)157
C9—H9···O1ii0.932.523.444 (5)172
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+2.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and both Universiti Teknologi MARA and Universiti Kebangsaan Malaysia for research grants Nos. 600-RMI/DANA5/3/RIF(147/2012) and LRGS/BU/2011/USM-UKM/PG/02, respectively. Analytical services provided by CRIM are very much appreciated. HMA would like to thank the Ministry of Higher Education of Libya for the scholarship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOthman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds