metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[silver(I)-μ-N-[(pyridin-2-yl)meth­yl]pyridine-3-amine-κ2N:N′] hexa­fluorido­phosphate]

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and bResearch Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 16 May 2014; accepted 18 May 2014; online 24 May 2014)

In the title polymeric complex, {[Ag(C11H11N3)]PF6}n, the AgI ion is two-coordinated in a nearly linear coordination geometry [N—Ag—N = 175.98 (9)°] by two pyridine N atoms from two symmetry-related N-[(pyridine-2-yl)meth­yl]pyridine-3-amine ligands. Each AgI ion is bridged by the ligands, forming a helical chain propagating along the b-axis direction. The right- and left-handed helical chains are alternately arranged via Ag⋯Ag [3.2639 (5) Å] and ππ stacking inter­actions [centroid–centroid distance = 3.523 (1) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to (101). Weak Ag⋯F inter­actions [longest Ag⋯F inter­action = 3.153 (2) Å], as well as N—H⋯F and C—H⋯F hydrogen-bonding inter­actions, occur between the helical chains and the anions.

Related literature

For structures of AgI coordination polymers with symmetrical dipyridyl ligands, see: Lee et al. (2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]); Leong & Vittal (2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]); Park et al. (2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]) and of AgI coordination polymers with unsymmetrical dipyridyl ligands, see: Moon & Park (2013[Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414-m415.]); Zhang et al. (2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). For the synthesis of the ligand, see: Lee et al. (2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C11H11N3)]PF6

  • Mr = 438.07

  • Monoclinic, P 21 /n

  • a = 10.9978 (6) Å

  • b = 10.5081 (6) Å

  • c = 12.7559 (7) Å

  • β = 108.976 (1)°

  • V = 1394.04 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 173 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.687, Tmax = 0.737

  • 7790 measured reflections

  • 2740 independent reflections

  • 2509 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.05

  • 2740 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯F5i 0.88 2.51 3.354 (4) 160
C4—H4⋯F1ii 0.95 2.52 3.336 (4) 145
C5—H5⋯F5iii 0.95 2.55 3.447 (4) 157
C5—H5⋯F6iii 0.95 2.43 3.280 (4) 149
C6—H6A⋯F3iv 0.99 2.54 3.467 (4) 155
C11—H11⋯F3v 0.95 2.49 3.397 (4) 160
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal-organic frameworks based on silver ions and dipyridyl type ligands have been of increasing interest in coordination chemistry owing to their intriguing architectures caused by the variety of coordination geometries of the Ag(I) ions (Lee et al., 2012; Leong & Vittal, 2011; Park et al., 2010). Recently, we have reported an investigation of Ag(I) coordination polymers using unsymmetrical dipyridyl ligands with nitrogen donor atoms in different positions on the two terminal pyridines (Moon & Park, 2013; Zhang et al., 2013). In extending this work, N-(pyridine-2-ylmethyl)pyridine-3-amine as an unsymmetrical dipyridyl ligand was prepared by the reaction of 3-aminopyridine and 2-pyridinecarboxaldehyde according to a previously reported method (Lee et al., 2013). Herein we report the crystal structure of the title compound prepared by the reaction of silver hexafluorophosphate with the unsymmetrical dipyridyl ligand. The structure of the title compound is isostructural with that of the perchlorate salt (Zhang et al., 2013).

The title compound is shown in Fig. 1. The asymmetric unit contains one AgI cation, one N-(pyridine-2-ylmethyl)pyridine-3-amine (Lee et al., 2013) ligand and one PF6- anion. The Ag atom links two pyridine N atoms from two symmetry-related ligands to form a helical chain. Thus the Ag atom is two-coordinate in a slightly distorted linear coordination geometry [N–Ag–N = 175.98 (9)°]. The helical chain with a pitch length of 10.5081 (6) Å propagates along the b axis (Fig. 2). Right- and left-handed helical chains are alternately arranged via Ag···Ag [3.2639 (5) Å] and ππ stacking interactions [centroid-centroid distance = 3.523 (1) Å] between pyridine rings of the helical chains, resulting in the formation of a two-dimensional supramolecular network extending parallel to the (101) plane (Fig. 3).

The non-coordinating PF6- anions participate in Ag···F interactions (Ag1···F1 3.035 (2), Ag1···F3 3.041 (2), Ag1···F6iii 3.153 (2) Å, symmetry code: (iii) 1/2 + x, 1.5 - y, 1/2 + z) (Fig. 1,3). In addition,N–H···F and C–H···F hydrogen bonds (Table 1, Fig. 3) between the helical chains and anions are also found in the crystal.

Related literature top

For structures of AgI coordination polymers with symmetrical dipyridyl ligands, see: Lee et al. (2012); Leong & Vittal (2011); Park et al. (2010) and of AgI coordination polymers with unsymmetrical dipyridyl ligands, see: Moon & Park (2013); Zhang et al. (2013). For the synthesis of the ligand, see: Lee et al. (2013).

Experimental top

The ligand (N-(pyridin-2-ylmethyl)pyridine-3-amine) was prepared according to a procedure described by Lee et al. (2013). Crystals of the title compound suitable for X-ray analysis were obtained by vapor diffusion of diethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) hexafluorophosphate in the molar ratio 1:1 in methanol.

Refinement top

For structures of AgI coordination polymers with symmetrical dipyridyl ligands, see Lee et al. (2012); Leong & Vittal (2011); Park et al. (2010) and of AgI coordination polymers with unsymmetrical dipyridyl ligands, see: Moon & Park (2013); Zhang et al. (2013). For the synthesis of the ligand, see: Lee et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level and dashed lines present Ag···F contacts [Symmetry codes: (i) 1/2 - x, 1/2 + y, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z].
[Figure 2] Fig. 2. The helical chain formed by cationic polymer of the title compound along the b axis.
[Figure 3] Fig. 3. The two-dimensional supramolecular structure formed through Ag···Ag and Ag···F interactions (yellow dashed lines) and ππ stacking interactions (black dashed lines). Red dashed lines present N–H···F hydrogen bonds.
catena-Poly[[silver(I)-µ-N-[(pyridin-2-yl)methyl]pyridine-3-amine-κ2N:N'] hexafluoridophosphate] top
Crystal data top
[Ag(C11H11N3)]PF6F(000) = 856
Mr = 438.07Dx = 2.087 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5558 reflections
a = 10.9978 (6) Åθ = 2.6–28.3°
b = 10.5081 (6) ŵ = 1.63 mm1
c = 12.7559 (7) ÅT = 173 K
β = 108.976 (1)°Block, pale-yellow
V = 1394.04 (13) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2740 independent reflections
Radiation source: fine-focus sealed tube2509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.687, Tmax = 0.737k = 1212
7790 measured reflectionsl = 157
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0342P)2 + 2.1214P]
where P = (Fo2 + 2Fc2)/3
2740 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ag(C11H11N3)]PF6V = 1394.04 (13) Å3
Mr = 438.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9978 (6) ŵ = 1.63 mm1
b = 10.5081 (6) ÅT = 173 K
c = 12.7559 (7) Å0.25 × 0.25 × 0.20 mm
β = 108.976 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2740 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2509 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.737Rint = 0.018
7790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.05Δρmax = 0.86 e Å3
2740 reflectionsΔρmin = 0.44 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.47207 (2)0.61822 (2)0.412386 (18)0.03167 (9)
N10.5497 (2)0.4784 (2)0.33275 (19)0.0266 (5)
N20.4485 (3)0.2196 (3)0.1313 (2)0.0369 (6)
H20.48380.17270.09170.044*
N30.0973 (2)0.2683 (2)0.01010 (19)0.0283 (5)
C10.4751 (3)0.3971 (3)0.2586 (2)0.0280 (6)
H10.38450.40210.24170.034*
C20.5256 (3)0.3050 (3)0.2052 (2)0.0281 (6)
C30.6588 (3)0.3014 (3)0.2305 (3)0.0332 (7)
H30.69720.24080.19560.040*
C40.7343 (3)0.3859 (3)0.3062 (3)0.0343 (7)
H40.82520.38390.32420.041*
C50.6775 (3)0.4734 (3)0.3559 (2)0.0302 (6)
H50.73030.53170.40790.036*
C60.3137 (3)0.2022 (3)0.1148 (3)0.0346 (7)
H6A0.30010.21030.18760.042*
H6B0.28960.11440.08800.042*
C70.2236 (3)0.2940 (3)0.0343 (2)0.0298 (6)
C80.2648 (4)0.3970 (3)0.0121 (3)0.0384 (7)
H80.35410.41450.00600.046*
C90.1750 (4)0.4743 (3)0.0851 (3)0.0435 (8)
H90.20210.54620.11690.052*
C100.0460 (4)0.4471 (3)0.1120 (3)0.0405 (8)
H100.01720.49820.16300.049*
C110.0118 (3)0.3428 (3)0.0620 (3)0.0358 (7)
H110.07700.32310.07970.043*
P10.37249 (7)0.77956 (8)0.11683 (7)0.03202 (19)
F10.4915 (2)0.7903 (2)0.22735 (18)0.0563 (6)
F20.4462 (3)0.6767 (2)0.0700 (2)0.0647 (7)
F30.31392 (19)0.66683 (19)0.17158 (17)0.0455 (5)
F40.2950 (3)0.8808 (2)0.1620 (3)0.0682 (7)
F50.43037 (19)0.89076 (19)0.06094 (19)0.0497 (5)
F60.2517 (2)0.7676 (2)0.00672 (18)0.0597 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03861 (15)0.02833 (14)0.02926 (14)0.00868 (9)0.01269 (10)0.00213 (9)
N10.0309 (12)0.0256 (12)0.0232 (12)0.0033 (10)0.0087 (10)0.0017 (9)
N20.0353 (14)0.0405 (15)0.0373 (15)0.0029 (11)0.0154 (12)0.0149 (12)
N30.0383 (13)0.0253 (12)0.0232 (12)0.0064 (10)0.0127 (10)0.0031 (9)
C10.0240 (13)0.0315 (15)0.0279 (15)0.0010 (11)0.0079 (11)0.0011 (12)
C20.0312 (14)0.0294 (14)0.0252 (14)0.0015 (12)0.0109 (12)0.0006 (11)
C30.0338 (15)0.0377 (16)0.0325 (16)0.0065 (13)0.0170 (13)0.0004 (13)
C40.0246 (14)0.0443 (18)0.0346 (17)0.0012 (12)0.0105 (12)0.0030 (13)
C50.0322 (15)0.0305 (15)0.0259 (14)0.0044 (12)0.0068 (12)0.0010 (12)
C60.0387 (17)0.0321 (15)0.0307 (16)0.0089 (13)0.0080 (13)0.0041 (12)
C70.0401 (16)0.0275 (14)0.0232 (14)0.0075 (12)0.0121 (12)0.0054 (11)
C80.0502 (19)0.0357 (17)0.0330 (17)0.0148 (14)0.0188 (15)0.0047 (13)
C90.071 (2)0.0301 (16)0.0350 (18)0.0131 (16)0.0240 (17)0.0004 (13)
C100.062 (2)0.0301 (16)0.0296 (16)0.0037 (15)0.0158 (15)0.0016 (13)
C110.0394 (16)0.0357 (16)0.0316 (16)0.0003 (14)0.0105 (13)0.0017 (13)
P10.0292 (4)0.0364 (4)0.0308 (4)0.0005 (3)0.0103 (3)0.0018 (3)
F10.0522 (12)0.0657 (14)0.0409 (12)0.0176 (11)0.0013 (10)0.0084 (10)
F20.0786 (17)0.0548 (14)0.0761 (17)0.0126 (12)0.0465 (14)0.0002 (12)
F30.0439 (11)0.0452 (11)0.0473 (12)0.0047 (9)0.0147 (9)0.0107 (9)
F40.0735 (16)0.0467 (13)0.105 (2)0.0054 (11)0.0570 (16)0.0062 (12)
F50.0384 (11)0.0499 (12)0.0589 (13)0.0044 (9)0.0132 (10)0.0207 (10)
F60.0549 (13)0.0640 (14)0.0469 (12)0.0154 (11)0.0018 (10)0.0164 (11)
Geometric parameters (Å, º) top
Ag1—N12.117 (2)C5—H50.9500
Ag1—N3i2.130 (2)C6—C71.519 (4)
Ag1—Ag1ii3.2639 (5)C6—H6A0.9900
N1—C11.340 (4)C6—H6B0.9900
N1—C51.340 (4)C7—C81.378 (4)
N2—C21.376 (4)C8—C91.381 (5)
N2—C61.440 (4)C8—H80.9500
N2—H20.8800C9—C101.377 (5)
N3—C111.334 (4)C9—H90.9500
N3—C71.348 (4)C10—C111.380 (5)
N3—Ag1iii2.130 (2)C10—H100.9500
C1—C21.398 (4)C11—H110.9500
C1—H10.9500P1—F21.581 (2)
C2—C31.395 (4)P1—F41.584 (2)
C3—C41.374 (4)P1—F11.585 (2)
C3—H30.9500P1—F61.594 (2)
C4—C51.377 (4)P1—F51.604 (2)
C4—H40.9500P1—F31.612 (2)
N1—Ag1—N3i175.98 (9)H6A—C6—H6B107.4
N1—Ag1—Ag1ii77.59 (6)N3—C7—C8121.2 (3)
N3i—Ag1—Ag1ii105.17 (6)N3—C7—C6115.1 (2)
C1—N1—C5119.2 (2)C8—C7—C6123.7 (3)
C1—N1—Ag1122.10 (19)C7—C8—C9119.2 (3)
C5—N1—Ag1118.67 (19)C7—C8—H8120.4
C2—N2—C6123.9 (3)C9—C8—H8120.4
C2—N2—H2118.1C10—C9—C8119.9 (3)
C6—N2—H2118.1C10—C9—H9120.0
C11—N3—C7118.9 (3)C8—C9—H9120.0
C11—N3—Ag1iii118.4 (2)C9—C10—C11117.6 (3)
C7—N3—Ag1iii122.7 (2)C9—C10—H10121.2
N1—C1—C2122.5 (3)C11—C10—H10121.2
N1—C1—H1118.8N3—C11—C10123.2 (3)
C2—C1—H1118.8N3—C11—H11118.4
N2—C2—C3120.4 (3)C10—C11—H11118.4
N2—C2—C1122.2 (3)F2—P1—F4178.42 (16)
C3—C2—C1117.4 (3)F2—P1—F190.46 (15)
C4—C3—C2119.6 (3)F4—P1—F190.87 (15)
C4—C3—H3120.2F2—P1—F689.76 (15)
C2—C3—H3120.2F4—P1—F688.89 (16)
C3—C4—C5119.6 (3)F1—P1—F6179.13 (13)
C3—C4—H4120.2F2—P1—F590.22 (13)
C5—C4—H4120.2F4—P1—F590.62 (13)
N1—C5—C4121.7 (3)F1—P1—F590.65 (12)
N1—C5—H5119.1F6—P1—F590.19 (12)
C4—C5—H5119.1F2—P1—F389.29 (13)
N2—C6—C7115.6 (3)F4—P1—F389.86 (12)
N2—C6—H6A108.4F1—P1—F389.85 (11)
C7—C6—H6A108.4F6—P1—F389.31 (11)
N2—C6—H6B108.4F5—P1—F3179.29 (13)
C7—C6—H6B108.4
N3i—Ag1—N1—C1133.0 (12)C3—C4—C5—N10.3 (5)
Ag1ii—Ag1—N1—C193.3 (2)C2—N2—C6—C784.6 (4)
N3i—Ag1—N1—C545.6 (14)C11—N3—C7—C81.5 (4)
Ag1ii—Ag1—N1—C588.1 (2)Ag1iii—N3—C7—C8175.7 (2)
C5—N1—C1—C21.0 (4)C11—N3—C7—C6178.5 (3)
Ag1—N1—C1—C2179.6 (2)Ag1iii—N3—C7—C64.2 (3)
C6—N2—C2—C3168.9 (3)N2—C6—C7—N3172.9 (2)
C6—N2—C2—C110.4 (5)N2—C6—C7—C87.1 (4)
N1—C1—C2—N2178.3 (3)N3—C7—C8—C90.5 (5)
N1—C1—C2—C31.0 (4)C6—C7—C8—C9179.6 (3)
N2—C2—C3—C4178.7 (3)C7—C8—C9—C100.9 (5)
C1—C2—C3—C40.6 (4)C8—C9—C10—C111.1 (5)
C2—C3—C4—C50.2 (5)C7—N3—C11—C101.2 (5)
C1—N1—C5—C40.6 (4)Ag1iii—N3—C11—C10176.1 (2)
Ag1—N1—C5—C4179.3 (2)C9—C10—C11—N30.1 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F5iv0.882.513.354 (4)160
C4—H4···F1v0.952.523.336 (4)145
C5—H5···F5vi0.952.553.447 (4)157
C5—H5···F6vi0.952.433.280 (4)149
C6—H6A···F3iii0.992.543.467 (4)155
C11—H11···F3vii0.952.493.397 (4)160
Symmetry codes: (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+3/2, y1/2, z+1/2; (vi) x+1/2, y+3/2, z+1/2; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···F5i0.882.513.354 (4)159.9
C4—H4···F1ii0.952.523.336 (4)144.6
C5—H5···F5iii0.952.553.447 (4)156.7
C5—H5···F6iii0.952.433.280 (4)149.0
C6—H6A···F3iv0.992.543.467 (4)154.9
C11—H11···F3v0.952.493.397 (4)160.1
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

This work was supported by NRF (2010–0022675) projects.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds