organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-2-Benzyl­­idene-4-n-butyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elfal_mohammed@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 7 May 2014; accepted 8 May 2014; online 21 May 2014)

In the title compound, C19H19NOS, the six-membered hetero­cyclic ring of the benzo­thia­zine fragment exhibits a screw boat conformation. The plane of the fused benzene ring makes a dihedral angle of 72.38 (12)° with that of the terminal phenyl ring, and is nearly perpendicular to the mean plane formed by the atoms through the n-butyl chain, as indicated by the dihedral angle of 88.1 (2)°. In the crystal, mol­ecules are linked by C—H⋯O inter­actions to form supra­molecular chains along [110].

Related literature

For the pharmaceutical and biochemical properties of benzo­thia­zine and their derivatives, see: Malagu et al. (1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]); Wammack et al. (2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-601.]); Rathore & Kumar (2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]); Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For related structures, see: Sebbar et al. (2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160-o161.]); Saeed et al. (2010[Saeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289-o2290.]). For puckering calculations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19NOS

  • Mr = 309.41

  • Triclinic, [P \overline 1]

  • a = 8.7717 (13) Å

  • b = 8.8631 (13) Å

  • c = 12.3184 (16) Å

  • α = 88.283 (9)°

  • β = 82.302 (9)°

  • γ = 60.895 (8)°

  • V = 828.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.641, Tmax = 0.746

  • 17374 measured reflections

  • 3923 independent reflections

  • 2912 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.04

  • 3923 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.50 3.407 (2) 165
Symmetry code: (i) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

Recently, a number of pharmacological tests revealed that benzo­thia­zine derivatives present various biological activities. These derivatives are found potent analgesic (Wammack et al., 2002); anti-viral (Malagu et al., 1998; Rathore & Kumar, 2006) and anti-oxidant (Zia-ur-Rehman et al., 2009). As a continuation of our research work devoted to the development of N-substituted benzo­thia­zine with potential pharmacological activities, we have studied the action of 1-bromo­butane towards 2-(benzyl­idene)-3,4- di­hydro-2H-1,4-benzo­thia­zin-3-one under phase transfer catalysis conditions using tetra n-butyl ammonium bromide as catalyst and potassium carbonate as base (Saeed et al., 2010; Sebbar et al., 2014) (Scheme 1).

The molecule of the title compound is build up from two fused six-membered rings linked to a phenyl ring and to a n-butyl chain as shown in Fig. 1. The benzo­thia­zine fragment adopts a screw boat conformation as indicated by the puckering amplitude Q = 0.4701 (14) Å, and spherical polar angle θ = 70.21 (19)°, with ϕ = 333.4 (2)° (Cremer & Pople, 1975). The dihedral angle between the plane through the phenyl ring (C9 to C15) and the benzene ring (C1 to C6) is 72.38 (12)°. The mean plane formed by the atoms belonging to the n-butyl chain (C16 to C19) is nearly perpendicular to the benzene ring as indicated by the dihedral angle between them of 88.1 (2)°.

In the crystal, the molecules are linked by weak inter­molecular C4–H4···O1 inter­actions, in a fashion to form chains along [1 1 0] (see Fig. 2 and Table 1).

Synthesis and crystallization top

To a solution of 2-(benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.2 g, 0.7 mmol), potassium carbonate (0.4 g, 2.9 mmol) and tetra n-butyl ammonium bromide (0.024 g, 0.07 mmol) in DMF (15 ml) was added 1-bromo­butane (0.20 ml, 1.89 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was washed with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. Yellow crystals were isolated when the solvent was allowed to evaporate (yield = 48% and M.pt = 363 K).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methyl­ene) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq (aromatic and methyl­ene) and Uiso(H) = 1.5 Ueq(methyl). The (0 0 1) reflection was omitted owing to poor agreement.

Related literature top

For the pharmaceutical and biochemical properties of benzothiazine and their derivatives, see: Malagu et al. (1998); Wammack et al. (2002); Rathore & Kumar (2006); Zia-ur-Rehman et al. (2009). For related structures, see: Sebbar et al. (2014); Saeed et al. (2010). For puckering calculations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Structure projection along [1 1 0] of the title compound, showing molecules linked through C4–H4···O1 hydrogen bonds (dashed lines).
(2Z)-2-Benzylidene-4-n-utyl-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C19H19NOSZ = 2
Mr = 309.41F(000) = 328
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Melting point: 363 K
a = 8.7717 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8631 (13) ÅCell parameters from 3923 reflections
c = 12.3184 (16) Åθ = 2.6–27.9°
α = 88.283 (9)°µ = 0.20 mm1
β = 82.302 (9)°T = 296 K
γ = 60.895 (8)°Block, yellow
V = 828.5 (2) Å30.37 × 0.34 × 0.28 mm
Data collection top
Bruker X8 APEX
diffractometer
3923 independent reflections
Radiation source: fine-focus sealed tube2912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.641, Tmax = 0.746k = 1111
17374 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.061P)2 + 0.1635P]
where P = (Fo2 + 2Fc2)/3
3923 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C19H19NOSγ = 60.895 (8)°
Mr = 309.41V = 828.5 (2) Å3
Triclinic, P1Z = 2
a = 8.7717 (13) ÅMo Kα radiation
b = 8.8631 (13) ŵ = 0.20 mm1
c = 12.3184 (16) ÅT = 296 K
α = 88.283 (9)°0.37 × 0.34 × 0.28 mm
β = 82.302 (9)°
Data collection top
Bruker X8 APEX
diffractometer
3923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2912 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.746Rint = 0.033
17374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3923 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9210 (2)0.3479 (2)0.82655 (15)0.0483 (4)
C21.0667 (3)0.2113 (2)0.76691 (19)0.0648 (5)
H21.08390.21360.69090.078*
C31.1845 (3)0.0746 (3)0.8185 (2)0.0758 (7)
H31.27940.01810.77790.091*
C41.1622 (3)0.0746 (3)0.9299 (2)0.0761 (7)
H41.24490.01690.96530.091*
C51.0181 (3)0.2089 (2)0.99169 (18)0.0622 (5)
H51.00480.20671.06780.075*
C60.8931 (2)0.3472 (2)0.93992 (14)0.0447 (4)
C70.6448 (2)0.6452 (2)0.96790 (12)0.0416 (3)
C80.69106 (19)0.6857 (2)0.85347 (12)0.0408 (3)
C90.6528 (2)0.8484 (2)0.83178 (12)0.0449 (4)
H90.59910.92730.89120.054*
C100.6840 (2)0.9191 (2)0.72724 (13)0.0466 (4)
C110.6707 (3)0.8635 (3)0.62735 (15)0.0647 (5)
H110.63740.77900.62470.078*
C120.7061 (3)0.9318 (3)0.53127 (16)0.0779 (7)
H120.69600.89300.46460.093*
C130.7560 (3)1.0563 (3)0.53309 (18)0.0795 (7)
H130.78601.09760.46800.095*
C140.7610 (4)1.1182 (3)0.6313 (2)0.0900 (8)
H140.78931.20640.63350.108*
C150.7245 (3)1.0520 (3)0.72774 (17)0.0720 (6)
H150.72711.09710.79420.086*
C160.6813 (2)0.4450 (2)1.11277 (13)0.0498 (4)
H16A0.71850.32261.11580.060*
H16B0.55360.50751.12570.060*
C170.7506 (3)0.4944 (3)1.20408 (14)0.0575 (5)
H17A0.70100.61891.20840.069*
H17B0.87760.44291.18790.069*
C180.7032 (4)0.4335 (4)1.31329 (17)0.0835 (7)
H18A0.57670.47861.32610.100*
H18B0.75860.30841.30930.100*
C190.7580 (5)0.4878 (5)1.4086 (2)0.1144 (11)
H19A0.72210.44711.47500.172*
H19B0.70320.61161.41360.172*
H19C0.88370.43941.39830.172*
N10.73979 (17)0.48044 (16)1.00182 (10)0.0425 (3)
O10.52331 (16)0.75693 (15)1.02912 (9)0.0587 (3)
S10.77675 (6)0.51831 (6)0.75323 (3)0.05429 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (8)0.0423 (8)0.0613 (10)0.0214 (7)0.0011 (7)0.0073 (7)
C20.0519 (11)0.0527 (10)0.0814 (13)0.0224 (9)0.0096 (10)0.0181 (10)
C30.0487 (11)0.0488 (11)0.114 (2)0.0139 (9)0.0033 (12)0.0223 (12)
C40.0515 (11)0.0422 (10)0.127 (2)0.0129 (9)0.0271 (13)0.0001 (11)
C50.0576 (11)0.0471 (10)0.0800 (13)0.0209 (9)0.0224 (10)0.0038 (9)
C60.0390 (8)0.0371 (8)0.0612 (10)0.0204 (7)0.0090 (7)0.0005 (7)
C70.0403 (8)0.0431 (8)0.0394 (8)0.0188 (7)0.0045 (6)0.0009 (6)
C80.0358 (7)0.0442 (8)0.0376 (7)0.0160 (6)0.0026 (6)0.0032 (6)
C90.0464 (9)0.0444 (8)0.0371 (7)0.0174 (7)0.0028 (6)0.0013 (6)
C100.0470 (9)0.0444 (8)0.0422 (8)0.0184 (7)0.0021 (7)0.0014 (7)
C110.0884 (14)0.0673 (12)0.0484 (10)0.0453 (11)0.0118 (10)0.0071 (9)
C120.1082 (18)0.0814 (15)0.0432 (10)0.0467 (14)0.0055 (11)0.0038 (10)
C130.1030 (18)0.0853 (16)0.0524 (12)0.0518 (14)0.0037 (11)0.0152 (11)
C140.139 (2)0.0867 (16)0.0709 (15)0.0779 (17)0.0069 (15)0.0133 (12)
C150.1083 (17)0.0646 (12)0.0529 (11)0.0508 (12)0.0056 (11)0.0009 (9)
C160.0588 (10)0.0537 (10)0.0468 (9)0.0350 (9)0.0085 (8)0.0085 (7)
C170.0750 (13)0.0627 (11)0.0488 (9)0.0431 (10)0.0157 (9)0.0101 (8)
C180.128 (2)0.1015 (18)0.0516 (11)0.0780 (17)0.0226 (12)0.0191 (11)
C190.181 (3)0.155 (3)0.0538 (13)0.114 (3)0.0322 (17)0.0187 (16)
N10.0422 (7)0.0427 (7)0.0425 (7)0.0207 (6)0.0057 (5)0.0029 (5)
O10.0574 (7)0.0498 (7)0.0433 (6)0.0096 (6)0.0075 (5)0.0014 (5)
S10.0622 (3)0.0504 (3)0.0421 (2)0.0221 (2)0.00101 (19)0.00837 (17)
Geometric parameters (Å, º) top
C1—C61.386 (2)C11—H110.9300
C1—C21.391 (2)C12—C131.373 (4)
C1—S11.7505 (19)C12—H120.9300
C2—C31.361 (3)C13—C141.358 (3)
C2—H20.9300C13—H130.9300
C3—C41.360 (4)C14—C151.377 (3)
C3—H30.9300C14—H140.9300
C4—C51.388 (3)C15—H150.9300
C4—H40.9300C16—N11.474 (2)
C5—C61.394 (2)C16—C171.516 (2)
C5—H50.9300C16—H16A0.9700
C6—N11.421 (2)C16—H16B0.9700
C7—O11.2199 (18)C17—C181.516 (3)
C7—N11.369 (2)C17—H17A0.9700
C7—C81.496 (2)C17—H17B0.9700
C8—C91.339 (2)C18—C191.500 (3)
C8—S11.7514 (16)C18—H18A0.9700
C9—C101.466 (2)C18—H18B0.9700
C9—H90.9300C19—H19A0.9600
C10—C111.379 (3)C19—H19B0.9600
C10—C151.386 (3)C19—H19C0.9600
C11—C121.380 (3)
C6—C1—C2120.52 (18)C14—C13—H13120.5
C6—C1—S1121.86 (12)C12—C13—H13120.5
C2—C1—S1117.62 (16)C13—C14—C15120.8 (2)
C3—C2—C1120.8 (2)C13—C14—H14119.6
C3—C2—H2119.6C15—C14—H14119.6
C1—C2—H2119.6C14—C15—C10121.0 (2)
C4—C3—C2119.40 (19)C14—C15—H15119.5
C4—C3—H3120.3C10—C15—H15119.5
C2—C3—H3120.3N1—C16—C17114.51 (14)
C3—C4—C5121.1 (2)N1—C16—H16A108.6
C3—C4—H4119.5C17—C16—H16A108.6
C5—C4—H4119.5N1—C16—H16B108.6
C4—C5—C6120.2 (2)C17—C16—H16B108.6
C4—C5—H5119.9H16A—C16—H16B107.6
C6—C5—H5119.9C16—C17—C18110.99 (16)
C1—C6—C5117.94 (16)C16—C17—H17A109.4
C1—C6—N1121.31 (14)C18—C17—H17A109.4
C5—C6—N1120.73 (16)C16—C17—H17B109.4
O1—C7—N1120.87 (14)C18—C17—H17B109.4
O1—C7—C8120.34 (14)H17A—C17—H17B108.0
N1—C7—C8118.79 (13)C19—C18—C17113.8 (2)
C9—C8—C7118.94 (14)C19—C18—H18A108.8
C9—C8—S1123.81 (12)C17—C18—H18A108.8
C7—C8—S1117.05 (12)C19—C18—H18B108.8
C8—C9—C10128.90 (15)C17—C18—H18B108.8
C8—C9—H9115.5H18A—C18—H18B107.7
C10—C9—H9115.5C18—C19—H19A109.5
C11—C10—C15117.53 (17)C18—C19—H19B109.5
C11—C10—C9123.43 (17)H19A—C19—H19B109.5
C15—C10—C9119.02 (16)C18—C19—H19C109.5
C10—C11—C12120.8 (2)H19A—C19—H19C109.5
C10—C11—H11119.6H19B—C19—H19C109.5
C12—C11—H11119.6C7—N1—C6124.49 (13)
C13—C12—C11120.6 (2)C7—N1—C16116.46 (13)
C13—C12—H12119.7C6—N1—C16118.97 (13)
C11—C12—H12119.7C1—S1—C899.56 (8)
C14—C13—C12119.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.503.407 (2)165
Symmetry code: (i) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.503.407 (2)165
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289–o2290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160–o161.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds