organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­bromo-3,6-dimeth­oxycyclo­hexa-2,5-diene-1,4-dione

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: bruno.therrien@unine.ch

(Received 20 May 2014; accepted 21 May 2014; online 24 May 2014)

In the structure of the title compound, C8H6Br2O4, the complete mol­ecule is generated by the application of a centre of inversion. The mol­ecule is planar (r.m.s. deviation for all non-H atoms but methyl C = 0.0358 Å), with only the methyl groups being deviated from the plane [by ±0.321 (4) Å]. In the crystal packing, Br⋯O(methoxy) halogen bonds [3.2407 (19) Å] connect molecules into supramolecular layers parallel to (101).

Related literature

For the synthesis of the title compound, see: Viault et al. (2011[Viault, G., Grée, D., Das, S., Yadav, J. S. & Grée, R. (2011). Eur. J. Org. Chem. pp. 1233-1241.]). For the structure of bromanilic acid, see: Robl (1987[Robl, C. (1987). Z. Kristallogr. 180, 249-253.]). For similar structures with a 2,5-cyclo­hexa­diene-1,4-dione core, see: Nakatsuji et al. (2009[Nakatsuji, S., Nobusawa, M., Suzuki, H., Akutsu, H., Yamada, J. (2009). J. Org. Chem. 74, 9345-9350.]). For an article dealing with the biological relevance of this type of compound, see: Viault et al. (2013[Viault, G., Babu, K. S., Gautier, F., Barillé-Nion, S., Juin, P., Tasseau, O. & Grée, R. (2013). Med. Chem. 9, 1028-1034.]). For papers using the title compound as a synthetic precursor, see: Khan & Driscoll (1976[Khan, A. H. & Driscoll, J. S. (1976). J. Med. Chem. 19, 313-317.]); Tatsuta et al. (2001[Tatsuta, K., Mukai, H. & Mitsumoto, K. (2001). J. Antibiot. 54, 105-108.]); Kasahara & Kondo (2006[Kasahara, T. & Kondo, Y. (2006). Chem. Commun. pp. 891-893.]); Gan et al. (2009[Gan, X., Jiang, W., Wang, W. & Hu, L. (2009). Org. Lett. 11, 589-592.]). For metalla-assemblies obtained with analogous building blocks, see: Gupta et al. (2014[Gupta, G., Kumar, J. M., Garci, A., Rangaraj, N., Nagesh, N. & Therrien, B. (2014). ChemPlusChem, 79, 610-618.]); Therrien (2009[Therrien, B. (2009). Eur. J. Inorg. Chem. pp. 2445-2453.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Br2O4

  • Mr = 325.95

  • Monoclinic, P 21 /n

  • a = 9.4456 (9) Å

  • b = 5.4877 (3) Å

  • c = 10.0341 (9) Å

  • β = 113.846 (7)°

  • V = 475.71 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.50 mm−1

  • T = 173 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.246, Tmax = 0.704

  • 8772 measured reflections

  • 1284 independent reflections

  • 1144 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.04

  • 1284 reflections

  • 65 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.98 e Å−3

Data collection: EXPOSE (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

Embelin (2,5-di­hydroxy-3-undecyl­cyclo­hexa-2,5-diene-1,4-dione) and its derivatives possess great biological potential (Viault et al., 2013). Over the years, several synthetic strategies have been developed to prepare analogues of Embelin (Khan & Driscoll, 1976; Tatsuta et al., 2001; Kasahara & Kondo, 2006; Gan et al., 2009; Viault et al., 2011), and among the precursors used to synthesize these Embelin derivatives, 2,5-di­bromo-3,6-di­meth­oxy­cyclo­hexa-2,5-diene-1,4-dione (C8H6Br2O4) is often encountered. Moreover, such 2,5-di­hydroxy-1,4-benzo­quinones are commonly used as building blocks to generate metalla-assemblies (Therrien, 2009; Gupta et al., 2014), which explains our inter­est in the title compound. The molecular structure is presented in Fig. 1.

In the solid-state, the molecule, which sits about an inversion centre, is planar with the methyl groups being only ±0.321 (4) Å out of this plane (the plane defined by the di­bromo­benzo­quinone unit including the two O atoms of the meth­oxy groups has a r.m.s. deviation of 0.0358 Å). The electron delocalization within the cyclo­hexadiene core is reflected in the C—C bonds, which show inter­mediate values instead of the typical C—C and CC bond distances. A similar pattern of C—C bond distances was observed in the analogous compound bromanilic acid (Robl, 1987) and other substituted 2,5-cyclo­hexadiene-1,4-dione derivatives (Nakatsuji et al., 2009).

Supra­molecular features top

In the crystal packing Br···O(meth­oxy) halogen bonds [3.2407 (19) Å] connect molecules into supra­molecular layers parallel to (101).

Synthesis and crystallization top

2,5-Di­bromo-3,6-di­meth­oxy­cyclo­hexa-2,5-diene-1,4-dione was prepared according to a published method (Viault et al., 2011). Crystals were obtained by slow evaporation of an ethyl acetate solution containing the title compound.

Refinement top

Hydrogen atoms were included in calculated positions and treated as riding atoms, with C—H = 0.96 Å, and with Uiso(H) = 1.5Ueq(C).

Related literature top

For the synthesis of the title compound, see: Viault et al. (2011). For the structure of bromanilic acid, see: Robl (1987). For similar structures with a 2,5-cyclohexadiene-1,4-dione core, see: Nakatsuji et al. (2009). For an article dealing with the biological relevance of this type of compound, see: Viault et al. (2013). For papers using the title compound as a synthetic precursor, see: Khan & Driscoll (1976); Tatsuta et al. (2001); Kasahara & Kondo (2006); Gan et al. (2009). For metalla-assemblies obtained with analogous building blocks, see: Gupta et al. (2014); Therrien (2009).

Computing details top

Data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 2,5-dibromo-3,6-dimethoxy-2,5-cyclohexadiene-1,4-dione (symmetry operation i = -x, 1 - y, 2 - z). Displacement ellipsoids are drawn at the 50% probability level.
2,5-Dibromo-3,6-dimethoxycyclohexa-2,5-diene-1,4-dione top
Crystal data top
C8H6Br2O4F(000) = 312
Mr = 325.95Dx = 2.276 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7998 reflections
a = 9.4456 (9) Åθ = 2.4–25.9°
b = 5.4877 (3) ŵ = 8.50 mm1
c = 10.0341 (9) ÅT = 173 K
β = 113.846 (7)°Block, red
V = 475.71 (7) Å30.23 × 0.21 × 0.20 mm
Z = 2
Data collection top
Stoe IPDS
diffractometer
1284 independent reflections
Radiation source: fine-focus sealed tube1144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 0 pixels mm-1θmax = 29.2°, θmin = 2.5°
ϕ oscillation scansh = 1212
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 77
Tmin = 0.246, Tmax = 0.704l = 1313
8772 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0431P)2]
where P = (Fo2 + 2Fc2)/3
1284 reflections(Δ/σ)max < 0.001
65 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
C8H6Br2O4V = 475.71 (7) Å3
Mr = 325.95Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4456 (9) ŵ = 8.50 mm1
b = 5.4877 (3) ÅT = 173 K
c = 10.0341 (9) Å0.23 × 0.21 × 0.20 mm
β = 113.846 (7)°
Data collection top
Stoe IPDS
diffractometer
1284 independent reflections
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
1144 reflections with I > 2σ(I)
Tmin = 0.246, Tmax = 0.704Rint = 0.071
8772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
1284 reflectionsΔρmin = 0.98 e Å3
65 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 100 mm, ϕ oscillation scans 0 - 180°, step Δϕ = 1.2°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14128 (3)0.21073 (5)0.79296 (3)0.02303 (10)
C20.0827 (3)0.2940 (4)0.9112 (3)0.0197 (4)
C40.3943 (3)0.2112 (5)0.9080 (3)0.0253 (5)
H4A0.40450.24670.81090.038*
H4B0.49250.23330.91380.038*
H4C0.36080.04570.93200.038*
O20.2815 (2)0.3740 (4)1.00971 (19)0.0262 (4)
O10.1483 (2)0.1143 (4)0.8426 (2)0.0332 (4)
C10.0654 (3)0.3806 (4)0.9134 (2)0.0176 (4)
C30.1485 (2)0.4344 (4)1.0024 (2)0.0174 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02309 (14)0.02542 (15)0.02416 (15)0.00012 (9)0.01326 (10)0.00545 (8)
C20.0212 (11)0.0197 (10)0.0193 (11)0.0009 (8)0.0093 (9)0.0011 (8)
C40.0178 (10)0.0290 (12)0.0266 (12)0.0072 (9)0.0064 (9)0.0016 (9)
O20.0216 (8)0.0326 (9)0.0283 (9)0.0113 (7)0.0143 (7)0.0098 (8)
O10.0311 (10)0.0297 (10)0.0443 (11)0.0119 (8)0.0209 (9)0.0171 (9)
C10.0185 (10)0.0190 (10)0.0169 (9)0.0013 (8)0.0090 (8)0.0011 (8)
C30.0176 (9)0.0184 (10)0.0177 (9)0.0004 (8)0.0086 (8)0.0012 (7)
Geometric parameters (Å, º) top
Br1—C11.882 (2)C4—H4B0.9600
C2—O11.219 (3)C4—H4C0.9600
C2—C11.469 (3)O2—C31.330 (3)
C2—C31.509 (3)C1—C3i1.351 (3)
C4—O21.448 (3)C3—C1i1.351 (3)
C4—H4A0.9600
O1—C2—C1122.3 (2)H4B—C4—H4C109.5
O1—C2—C3121.0 (2)C3—O2—C4123.90 (19)
C1—C2—C3116.68 (19)C3i—C1—C2124.14 (19)
O2—C4—H4A109.5C3i—C1—Br1119.87 (16)
O2—C4—H4B109.5C2—C1—Br1115.96 (16)
H4A—C4—H4B109.5O2—C3—C1i118.4 (2)
O2—C4—H4C109.5O2—C3—C2122.4 (2)
H4A—C4—H4C109.5C1i—C3—C2119.05 (19)
O1—C2—C1—C3i174.0 (2)C4—O2—C3—C215.5 (4)
C3—C2—C1—C3i4.2 (4)O1—C2—C3—O21.7 (4)
O1—C2—C1—Br14.2 (3)C1—C2—C3—O2179.9 (2)
C3—C2—C1—Br1177.59 (16)O1—C2—C3—C1i174.3 (2)
C4—O2—C3—C1i168.5 (2)C1—C2—C3—C1i4.0 (4)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC8H6Br2O4
Mr325.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.4456 (9), 5.4877 (3), 10.0341 (9)
β (°) 113.846 (7)
V3)475.71 (7)
Z2
Radiation typeMo Kα
µ (mm1)8.50
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.246, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
8772, 1284, 1144
Rint0.071
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.04
No. of reflections1284
No. of parameters65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.98

Computer programs: EXPOSE (Stoe & Cie, 2000), CELL (Stoe & Cie, 2000), INTEGRATE (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

This work was supported by the Swiss National Science Foundation (grant No. 200020_140212).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGan, X., Jiang, W., Wang, W. & Hu, L. (2009). Org. Lett. 11, 589–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, G., Kumar, J. M., Garci, A., Rangaraj, N., Nagesh, N. & Therrien, B. (2014). ChemPlusChem, 79, 610-618.  Web of Science CrossRef CAS Google Scholar
First citationKasahara, T. & Kondo, Y. (2006). Chem. Commun. pp. 891–893.  Web of Science CrossRef Google Scholar
First citationKhan, A. H. & Driscoll, J. S. (1976). J. Med. Chem. 19, 313–317.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNakatsuji, S., Nobusawa, M., Suzuki, H., Akutsu, H., Yamada, J. (2009). J. Org. Chem. 74, 9345–9350.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobl, C. (1987). Z. Kristallogr. 180, 249–253.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTatsuta, K., Mukai, H. & Mitsumoto, K. (2001). J. Antibiot. 54, 105–108.  CrossRef PubMed CAS Google Scholar
First citationTherrien, B. (2009). Eur. J. Inorg. Chem. pp. 2445–2453.  Web of Science CSD CrossRef Google Scholar
First citationViault, G., Babu, K. S., Gautier, F., Barillé-Nion, S., Juin, P., Tasseau, O. & Grée, R. (2013). Med. Chem. 9, 1028–1034.  CrossRef CAS PubMed Google Scholar
First citationViault, G., Grée, D., Das, S., Yadav, J. S. & Grée, R. (2011). Eur. J. Org. Chem. pp. 1233–1241.  Web of Science CrossRef Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds