

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Cyclohexyl-6,7-dimethoxy-1,4-dihydronaphthalene

Shao-Yuan Chen,^a Ya-Ping Zhang,^a Bing Huang,^b Jia-Jun Yu^c and Wei-Yong Shi^d*

^aInstitute of Biotechnology, Zhejiang University, People's Republic of China, ^bCollege of Pharmaceutical Science, Zheijang University, People's Republic of China, ^cCollege of Agriculture and Biotechnology, Zhejiang University, People's Republic of China, and ^dCollege of Environmental & Resource Sciences, Zhejiang University, People's Republic of China Correspondence e-mail: wyshi@zju.edu.cn

Received 24 April 2014; accepted 6 May 2014

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.114; data-to-parameter ratio = 14.9.

The title compound, $C_{18}H_{24}O_2$, was isolated from the leaves extract of Ficus carica L. The cyclohexane ring displays a chair conformation whereas the cyclohexa-1,4-diene ring adopts a flattened boat conformation with methyl C atoms at the prow and stern. In the crystal, molecules are linked by weak C-H...O hydrogen bonds into supramolecular chains propagated along the *b*-axis direction.

Related literature

For the bioactivity of the title compound, see: Fang et al. (2008); Xie & Zhuang (2010). For biological activity of compounds isolated from Ficus carica L, see: Joseph & Raj (2011).

5062 measured reflections

 $R_{\rm int} = 0.027$

2737 independent reflections 2318 reflections with $I > 2\sigma(I)$

mm

Experimental

Crystal data

$C_{18}H_{24}O_2$	V = 786.08 (6) Å ³
$M_r = 272.37$	Z = 2
Monoclinic, P2 ₁	Cu Ka radiation
a = 9.0635 (4) Å	$\mu = 0.57 \text{ mm}^{-1}$
b = 6.3973 (3) Å	T = 294 K
c = 13.9872 (7) Å	$0.28 \times 0.15 \times 0.12$
$\beta = 104.241 \ (5)^{\circ}$	

Data collection

Agilent Xcalibur (Atlas, Gemini
ultra) diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
$T_{\rm min} = 0.76, T_{\rm max} = 0.85$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	1 restraint
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$
2737 reflections	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$
184 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C18-H18A\cdots O2^{i}$	0.96	2.59	3.272 (3)	129
Symmetry code: (i) $-x +$	$2, v + \frac{1}{2}, -z + \frac{1}{2}$	- 1.		

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Diffraction data was collected at the Analytical Center of the Chemistry Department of Zhejiang University, China.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5788).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.

Fang, Y.-H., Wei, Y.-X., Zhao, A.-Y. & Guo, Q. (2008). Chin. J. Biochem. Pharm. 29, 366-369.

Joseph, B. & Raj, S. J. (2011). Int. J. PharmTech. Res. 3, 8-12.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xie, M.-N. & Zhuang, W.-X. (2010). Life Sci. Res. 14, 523-527.

supporting information

Acta Cryst. (2014). E70, o671 [doi:10.1107/S1600536814010204]

1-Cyclohexyl-6,7-dimethoxy-1,4-dihydronaphthalene

Shao-Yuan Chen, Ya-Ping Zhang, Bing Huang, Jia-Jun Yu and Wei-Yong Shi

S1. Comment

Ficus carica L. is a deciduous tree belonging to the Moraceae family. Different biologically activity compounds have been isolated from this plant (Joseph & Raj, 2011). The leaf extracts of Ficus carica L. show the potential activity of inhibit the growth of the cancer cell, antioxidative and antibiosis (Xie & Zhuang, 2010; Fang *et al.*, 2008). The title compound is one of leaves extracts from Ficus carica L.

In the title compound, the cyclohexane ring displays the chair conformation whereas the cyclohexadiene ring adopts the flattened boat conformation with the methyl-C atoms (C7 and C10) on the prow and stern, respectively. In the crystal, the molecules are linked by weak C—H···O hydrogen bonds into the supramolecular chains running along the *b*-axis direction.

S2. Experimental

The leaves of Ficus carica was be extracted by petroleum ether. The upper phase was filtered and evaporated *in vacuo* to obtain the crystals. The single crystals were recrystallized from a hexane solution.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the others.

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

F(000) = 296

 $\theta = 3.2 - 67.6^{\circ}$

 $\mu = 0.57 \text{ mm}^{-1}$ T = 294 K

Needle, colourless

 $0.28 \times 0.15 \times 0.12 \text{ mm}$

 $D_{\rm x} = 1.151 {\rm Mg m^{-3}}$

Melting point: 423 K

Cu *K* α radiation, $\lambda = 1.54180$ Å

Cell parameters from 5062 reflections

1-Cyclohexyl-6,7-dimethoxy-1,4-dihydronaphthalene

Crystal data

C₁₈H₂₄O₂ $M_r = 272.37$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 9.0635 (4) Å b = 6.3973 (3) Å c = 13.9872 (7) Å $\beta = 104.241$ (5)° V = 786.08 (6) Å³ Z = 2

Data collection

Agilent Xcalibur (Atlas, Gemini ultra)	5062 measured reflections
diffractometer	2737 independent reflections
Radiation source: fine-focus sealed tube	2318 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
ω scans	$\theta_{\text{max}} = 67.6^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(CrysAlis PRO; Agilent, 2012)	$k = -7 \rightarrow 7$
$T_{\min} = 0.76, \ T_{\max} = 0.85$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.114$	$w = 1/[\sigma^2(F_o^2) + (0.0621P)^2 + 0.0278P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2737 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
184 parameters	$\Delta \rho_{\rm max} = 0.10 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0191 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.67571 (16)	0.5524 (2)	0.46174 (9)	0.0672 (4)	
O2	0.83494 (17)	0.8807 (2)	0.52180 (12)	0.0718 (4)	
C1	0.2221 (5)	0.3458 (6)	0.8467 (4)	0.1353 (15)	
H1A	0.2527	0.3728	0.9170	0.162*	
H1B	0.1118	0.3393	0.8273	0.162*	
C2	0.2869 (5)	0.1400 (6)	0.8249 (3)	0.1189 (12)	
H2A	0.2463	0.1053	0.7559	0.143*	
H2B	0.2559	0.0314	0.8642	0.143*	
C3	0.4597 (4)	0.1463 (4)	0.8472 (2)	0.0911 (8)	
H3A	0.4972	0.0133	0.8296	0.109*	
H3B	0.5010	0.1678	0.9173	0.109*	
C4	0.5140 (3)	0.3217 (3)	0.78985 (15)	0.0649 (5)	
H4	0.4671	0.2958	0.7199	0.078*	
C5	0.4514 (3)	0.5281 (4)	0.8149 (2)	0.0806 (6)	
H5A	0.4832	0.6389	0.7771	0.097*	
H5B	0.4921	0.5582	0.8843	0.097*	
C6	0.2766 (4)	0.5223 (6)	0.7919 (3)	0.1258 (13)	
H6A	0.2393	0.6543	0.8107	0.151*	
H6B	0.2357	0.5039	0.7215	0.151*	
C7	0.6876 (3)	0.3242 (3)	0.80090 (15)	0.0650 (5)	
H7	0.7156	0.1848	0.7823	0.078*	
C8	0.7775 (3)	0.3614 (5)	0.90618 (18)	0.0876 (8)	
H8	0.7745	0.2588	0.9528	0.105*	

C9	0.8597 (3)	0.5300 (6)	0.93588 (19)	0.0947 (9)	
H9	0.9077	0.5409	1.0026	0.114*	
C10	0.8806 (3)	0.7015 (5)	0.87079 (18)	0.0859 (8)	
H10A	0.9882	0.7343	0.8837	0.103*	
H10B	0.8287	0.8247	0.8865	0.103*	
C11	0.8579 (2)	0.7884 (3)	0.69386 (17)	0.0616 (5)	
H11	0.9169	0.9059	0.7159	0.074*	
C12	0.8086 (2)	0.7530 (3)	0.59475 (15)	0.0552 (5)	
C13	0.72044 (19)	0.5754 (3)	0.56185 (13)	0.0501 (4)	
C14	0.6851 (2)	0.4408 (3)	0.62918 (14)	0.0514 (4)	
H14	0.6274	0.3224	0.6068	0.062*	
C15	0.7338 (2)	0.4775 (3)	0.73125 (14)	0.0539 (5)	
C16	0.8218 (2)	0.6528 (3)	0.76285 (14)	0.0610 (5)	
C17	0.5812 (3)	0.3808 (4)	0.42523 (17)	0.0823 (7)	
H17A	0.5560	0.3826	0.3544	0.123*	
H17B	0.4896	0.3895	0.4478	0.123*	
H17C	0.6336	0.2532	0.4485	0.123*	
C18	0.9424 (3)	1.0441 (4)	0.5498 (2)	0.0919 (8)	
H18A	0.9578	1.1121	0.4919	0.138*	
H18B	1.0373	0.9872	0.5870	0.138*	
H18C	0.9051	1.1436	0.5896	0.138*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0746 (9)	0.0747 (10)	0.0547 (7)	-0.0196 (8)	0.0205 (6)	-0.0016 (7)
O2	0.0705 (8)	0.0596 (9)	0.0941 (11)	-0.0131 (7)	0.0367 (7)	0.0036 (8)
C1	0.136 (3)	0.106 (3)	0.203 (4)	-0.003 (2)	0.117 (3)	0.007 (3)
C2	0.154 (3)	0.091 (2)	0.141 (3)	-0.035 (2)	0.092 (2)	-0.010 (2)
C3	0.140 (2)	0.0570 (13)	0.0913 (17)	-0.0017 (15)	0.0577 (16)	0.0064 (12)
C4	0.0840 (13)	0.0572 (11)	0.0592 (11)	0.0032 (10)	0.0287 (10)	0.0082 (9)
C5	0.0939 (16)	0.0562 (12)	0.1033 (17)	0.0071 (12)	0.0465 (13)	0.0113 (12)
C6	0.097 (2)	0.102 (2)	0.202 (4)	0.015 (2)	0.081 (2)	0.028 (3)
C7	0.0811 (13)	0.0583 (11)	0.0562 (11)	0.0179 (11)	0.0183 (9)	0.0064 (9)
C8	0.0953 (17)	0.103 (2)	0.0590 (13)	0.0274 (17)	0.0093 (12)	0.0216 (14)
C9	0.0919 (18)	0.123 (3)	0.0570 (12)	0.0246 (19)	-0.0047 (12)	-0.0068 (17)
C10	0.0874 (16)	0.094 (2)	0.0661 (14)	0.0091 (15)	0.0004 (11)	-0.0205 (14)
C11	0.0474 (9)	0.0562 (12)	0.0812 (13)	-0.0035 (8)	0.0157 (9)	-0.0141 (10)
C12	0.0431 (8)	0.0527 (10)	0.0743 (12)	0.0006 (8)	0.0229 (8)	-0.0012 (9)
C13	0.0449 (9)	0.0532 (10)	0.0545 (10)	-0.0011 (7)	0.0169 (7)	-0.0041 (8)
C14	0.0488 (9)	0.0498 (10)	0.0570 (10)	-0.0028 (8)	0.0157 (8)	-0.0043 (8)
C15	0.0546 (10)	0.0544 (11)	0.0532 (10)	0.0115 (8)	0.0140 (8)	-0.0018 (8)
C16	0.0533 (10)	0.0637 (12)	0.0623 (11)	0.0095 (9)	0.0070 (9)	-0.0139 (10)
C17	0.0982 (16)	0.0818 (16)	0.0584 (12)	-0.0295 (14)	0.0032 (11)	-0.0050 (11)
C18	0.0838 (16)	0.0603 (14)	0.146 (2)	-0.0186 (13)	0.0553 (16)	-0.0067 (15)

Geometric parameters (Å, °)

01—C13	1.367 (2)	С7—С8	1.516 (3)
O1—C17	1.409 (3)	С7—Н7	0.9800
O2—C12	1.373 (2)	C8—C9	1.318 (4)
O2—C18	1.417 (3)	C8—H8	0.9300
C1—C2	1.503 (5)	C9—C10	1.468 (5)
C1—C6	1.514 (5)	С9—Н9	0.9300
C1—H1A	0.9700	C10-C16	1.505 (3)
C1—H1B	0.9700	C10—H10A	0.9700
C2—C3	1.520 (5)	C10—H10B	0.9700
C2—H2A	0.9700	C11—C12	1.367 (3)
C2—H2B	0.9700	C11—C16	1.395 (3)
C3—C4	1.529 (3)	C11—H11	0.9300
С3—НЗА	0.9700	C12—C13	1.400 (3)
С3—Н3В	0.9700	C13—C14	1.371 (3)
C4—C5	1.512 (3)	C14—C15	1.406 (3)
C4—C7	1.543 (3)	C14—H14	0.9300
C4—H4	0.9800	C15—C16	1.384 (3)
C5—C6	1.537 (4)	C17—H17A	0.9600
C5—H5A	0.9700	C17—H17B	0.9600
С5—Н5В	0.9700	C17—H17C	0.9600
С6—Н6А	0.9700	C18—H18A	0.9600
С6—Н6В	0.9700	C18—H18B	0.9600
C7—C15	1.512 (3)	C18—H18C	0.9600
C13—O1—C17	117.13 (16)	С4—С7—Н7	106.8
C12—O2—C18	117.82 (19)	C9—C8—C7	124.2 (2)
C2—C1—C6	111.0 (3)	С9—С8—Н8	117.9
C2—C1—H1A	109.4	С7—С8—Н8	117.9
C6—C1—H1A	109.4	C8—C9—C10	124.4 (2)
C2—C1—H1B	109.4	С8—С9—Н9	117.8
C6—C1—H1B	109.4	С10—С9—Н9	117.8
H1A—C1—H1B	108.0	C9—C10—C16	113.5 (2)
C1—C2—C3	111.7 (3)	C9—C10—H10A	108.9
C1—C2—H2A	109.3	C16—C10—H10A	108.9
C3—C2—H2A	109.3	C9—C10—H10B	108.9
C1—C2—H2B	109.3	C16—C10—H10B	108.9
C3—C2—H2B	109.3	H10A—C10—H10B	107.7
H2A—C2—H2B	107.9	C12—C11—C16	121.65 (18)
C2—C3—C4	111.1 (2)	C12—C11—H11	119.2
С2—С3—НЗА	109.4	C16—C11—H11	119.2
C4—C3—H3A	109.4	C11—C12—O2	125.58 (18)
С2—С3—Н3В	109.4	C11—C12—C13	119.05 (17)
C4—C3—H3B	109.4	O2—C12—C13	115.35 (16)
НЗА—СЗ—НЗВ	108.0	O1—C13—C14	125.16 (16)
C5—C4—C3	109.39 (18)	O1—C13—C12	115.19 (15)
C5—C4—C7	113.54 (19)	C14—C13—C12	119.65 (16)

C3—C4—C7 C5—C4—H4	114.01 (19) 106.4	C13—C14—C15 C13—C14—H14	121.65 (17) 119.2
C3—C4—H4	106.4	C15—C14—H14	119.2
C7—C4—H4	106.4	C16—C15—C14	118.14 (17)
C4—C5—C6	110.9 (3)	C16—C15—C7	123.28 (18)
C4—C5—H5A	109.5	C14—C15—C7	118.58 (17)
С6—С5—Н5А	109.5	C15—C16—C11	119.85 (17)
C4—C5—H5B	109.5	C15—C16—C10	121.5 (2)
С6—С5—Н5В	109.5	C11—C16—C10	118.7 (2)
H5A—C5—H5B	108.0	O1—C17—H17A	109.5
C1—C6—C5	111.1 (3)	O1—C17—H17B	109.5
С1—С6—Н6А	109.4	H17A—C17—H17B	109.5
С5—С6—Н6А	109.4	O1—C17—H17C	109.5
С1—С6—Н6В	109.4	H17A—C17—H17C	109.5
С5—С6—Н6В	109.4	H17B—C17—H17C	109.5
H6A—C6—H6B	108.0	O2—C18—H18A	109.5
C15—C7—C8	110.8 (2)	O2—C18—H18B	109.5
C15—C7—C4	112.31 (16)	H18A—C18—H18B	109.5
C8—C7—C4	112.98 (18)	O2—C18—H18C	109.5
С15—С7—Н7	106.8	H18A—C18—H18C	109.5
С8—С7—Н7	106.8	H18B—C18—H18C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C18—H18A····O2 ⁱ	0.96	2.59	3.272 (3)	129

Symmetry code: (i) -x+2, y+1/2, -z+1.