organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-[(3*RS*,4*RS*)-3-phenyl-4-(phenyl-sulfonyl)isoxazolidin-2-yl]acetate

Zeynep Gültekin,^a Mehmet Civan,^b Wolfgang Frey^c and Tuncer Hökelek^b*

^aDepartment of Chemistry, Çankırı Karatekin University, TR-18100 Çankırı, Turkey, ^bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and ^cUniversität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 21 May 2014; accepted 26 May 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.031; wR factor = 0.085; data-to-parameter ratio = 22.4.

In the title compound, $C_{18}H_{19}NO_5S$, the five-membered isoxazolidine ring is in a half-chair conformation, and the phenyl rings are oriented at a dihedral angle of 66.53 (3)°. In the crystal, $C-H\cdots O$ hydrogen bonds link the molecules into a three-dimensional supramolecular structure. A weak $C-H\cdots \pi$ interaction is also observed between adjacent molecules.

Related literature

For 1,3-dipolar cycloaddition of nitrones with olefins leading to isoxazolidines, see: Gothelf & Jorgensen (1994); Gothelf *et al.* (1996); Cicchi *et al.* (2003). For the use of isoxazolidines in the syntheses of nucleosides, amino acids, peptides and β lactams, see: Merino *et al.* (1998); Leggio *et al.* (1997); Langlois & Rakotondradany (2000); Hermkens *et al.* (1994); Tran *et al.* (2013). For the synthesis of (*Z*)-*N*-benzylidene-2-methoxy-2oxoethanamine oxide, see: Diez-Martinez *et al.* (2010). For bond-length data, see: Allen *et al.* (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

 $C_{18}H_{19}NO_5S$ V = 1667.50 (8) Å³ $M_r = 361.40$ Z = 4Monoclinic, $P2_1/c$ Mo K α radiationa = 8.2346 (2) Å $\mu = 0.22 \text{ mm}^{-1}$ b = 15.1469 (5) ÅT = 100 Kc = 13.7410 (4) Å $0.50 \times 0.47 \times 0.37 \text{ mm}$ $\beta = 103.362$ (3)°

Data collection

Bruker Kappa APEXII DUO
diffractometer
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\min} = 0.896, T_{\max} = 0.922$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	228 parameters
$wR(F^2) = 0.085$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
5105 reflections	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7-C12 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O4^{i}$	1.00	2.32	3.2778 (11)	159
C14−H14···O2 ⁱⁱ	0.95	2.48	3.3326 (11)	150
C15−H15···O3 ⁱⁱⁱ	0.95	2.60	3.4543 (12)	150
C18−H18···O5 ^{iv}	0.95	2.50	3.4401 (12)	169
$C6-H6B\cdots Cg1^{v}$	0.98	2.74	3.6157 (12)	149

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 2, -z + 1; (iii) x - 1, y, z; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors wish to acknowledge the financial support of this work by the Çankırı Karatekin University Research Fund (grant No. BAP: 2012/06).

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5792).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cicchi, S., Marradi, M., Corsi, M., Faggi, C. & Goti, A. (2003). Eur. J. Org. Chem. pp. 4152–4160.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Diez-Martinez, A., Gültekin, Z., Delso, I., Tejero, T. & Merino, P. (2010). Synthesis, pp. 678–688.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Gothelf, K. V. & Jorgensen, K. A. (1994). J. Org. Chem. 59, 5687-5691.

34342 measured reflections

 $R_{\rm int} = 0.022$

5105 independent reflections 4839 reflections with $I > 2\sigma(I)$

- Gothelf, K. V., Thomsen, I. & Jorgensen, K. A. (1996). J. Am. Chem. Soc. 118, 59–64.
- Hermkens, P. H. H., Dinther, T. G. V., Joukema, C. W., Wagenaars, G. N. & Ottenheijm, H. C. J. (1994). *Tetrahedron Lett.* **35**, 9271–9274.
- Langlois, N. & Rakotondradany, F. (2000). Tetrahedron, 56, 2437-2448.
- Leggio, A., Liguori, A., Maiuolo, L., Napoli, A., Procopio, A., Siciliano, C. & Sindona, G. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 3097–3099.
- Merino, P., Frango, S., Merchan, F. L. & Tejero, T. (1998). *Tetrahedron Lett.* 39, 6411–6444.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tran, T. Q., Savinkov, R. S., Diev, V. V., Starova, G. L. & Molchanov, A. P. (2013). *Tetrahedron*, 69, 5173–5177.

supporting information

Acta Cryst. (2014). E70, o728-o729 [doi:10.1107/S1600536814012161]

Methyl 2-[(3RS,4RS)-3-phenyl-4-(phenylsulfonyl)isoxazolidin-2-yl]acetate

Zeynep Gültekin, Mehmet Civan, Wolfgang Frey and Tuncer Hökelek

S1. Comment

1,3-dipolar cycloaddition of nitrones with olefines leads to isoxazolidines (Gothelf & Jorgensen, 1994; Gothelf *et al.*, 1996; Cicchi *et al.*, 2003). Isoxazolidines have been used for the syntheses of nucleosides (Merino *et al.*, 1998; Leggio *et al.*, 1997), amino acids (Langlois & Rakotondradany, 2000), peptides (Hermkens *et al.*, 1994) and β -lactams (Tran *et al.*, 2013). The title compound can be a useful intermediate for the preparation of 1,3-aminoalcohols in organic chemistry. The present study was undertaken to ascertain the crystal, structure of the title compound.

In the molecule of the title compound (Fig. 1) the bond lengths are within normal ranges (Allen *et al.*, 1987). The fivemembered isoxazolidine ring [C (O1/N1/C1–C3)] is in half-chair conformation with puckering parameter (Cremer & Pople, 1975) of $\varphi = -161.72$ (6)°. The phenyl rings [A (C7–C12) and B (C13–C18)] are oriented at a dihedral angle of 66.53 (3)°. C1 and S1 atoms are -0.0301 (8) and -0.0326 (2) Å away from the corresponding planes of the phenyl rings Aand B, respectively.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into a three-dimensional structure, in which they may be effective in the stabilization of the structure. π ··· π contact between the phenyl rings, Cg1 —Cg2ⁱ [symmetry code: (i) - x, 1/2 + y, 1/2 - z, where Cg1 and Cg2 are the centroids of the rings A and B, respectively] may further stabilize the structure, with centroid-centroid distance of 3.9100 (5) Å. A weak C–H··· π interaction (Table 1) has also been observed.

S2. Experimental

The starting material, (Z)-N-benzylidene-2-methoxy-2-oxoethanamine oxide, was prepared by the literature method (Diez-Martinez *et al.*, 2010). For the synthesis of the title compound, (Z)-N-benzylidene-2-methoxy-2-oxo- ethanamine oxide (0.117 g, 0.605 mmol) was dissolved in toluene (2 ml), and then phenyl vinyl sulfone (0.102 g, 0.605 mmol) was added. The mixture was heated at 273 K for 5 h until the starting material was completely consumed as monitored by tlc. The resultant residue was directly purified by flash chromatography on silica using ethyl acetate as solvent. Crystallization of the product in ethyl acetate gave a colorless crystalline solid (yield: 92%), m.p.: 400-401 K.

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The reaction scheme.

Methyl 2-[(3RS,4RS)-3-phenyl-4-(phenylsulfonyl)isoxazolidin-2-yl]acetate

Crystal data C₁₈H₁₉NO₅S $M_r = 361.40$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.2346 (2) Å b = 15.1469 (5) Å c = 13.7410 (4) Å $\beta = 103.362$ (3)° V = 1667.50 (8) Å³ Z = 4

F(000) = 760 $D_x = 1.440 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4839 reflections $\theta = 2.0-30.6^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.50 \times 0.47 \times 0.37 \text{ mm}$ Data collection

Bruker Kappa APEXII DUO diffractometer Radiation source: fine-focus sealed tube Triumph monochromator ω + Phi Scans scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.896, T_{\max} = 0.922$	34342 measured reflections 5105 independent reflections 4839 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 30.6^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -21 \rightarrow 21$ $l = -19 \rightarrow 19$
Refinement Σ^2	II have a site here the set in former holes as
Least-squares matrix: full	hydrogen site location: inferred from
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2 + 0.6732P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
5105 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
228 parameters	$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.0182 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.79940 (2)	1.032574 (13)	0.635211 (14)	0.01200 (6)	
01	0.70058 (8)	0.81466 (4)	0.54622 (5)	0.01522 (13)	
02	0.72422 (9)	1.03940 (4)	0.52956 (5)	0.01772 (13)	
03	0.96262 (8)	1.07049 (5)	0.67213 (5)	0.01888 (14)	
04	0.80821 (10)	0.63499 (6)	0.40190 (6)	0.02603 (16)	
05	0.86652 (9)	0.60662 (5)	0.56648 (5)	0.02053 (14)	
N1	0.86900 (9)	0.78645 (5)	0.59648 (5)	0.01279 (13)	
C1	0.95186 (10)	0.87109 (5)	0.63373 (6)	0.01223 (14)	
H1	0.9807	0.9049	0.5775	0.015*	
C2	0.81075 (10)	0.91865 (5)	0.67116 (6)	0.01263 (14)	
H2	0.8324	0.9140	0.7456	0.015*	
C3	0.65340 (11)	0.86529 (6)	0.62291 (7)	0.01560 (16)	
H3A	0.6202	0.8262	0.6727	0.019*	
H3B	0.5592	0.9051	0.5942	0.019*	
C4	0.93803 (11)	0.74795 (6)	0.51777 (6)	0.01446 (15)	

H4A	1.0605	0.7420	0.5417	0.017*
H4B	0.9157	0.7877	0.4590	0.017*
C5	0.86226 (10)	0.65792 (6)	0.48709 (7)	0.01502 (16)
C6	0.79515 (15)	0.51924 (7)	0.54660 (9)	0.0275 (2)
H6A	0.6763	0.5243	0.5143	0.041*
H6B	0.8082	0.4869	0.6097	0.041*
H6C	0.8527	0.4874	0.5023	0.041*
C7	1.10686 (10)	0.85329 (5)	0.71446 (6)	0.01261 (15)
C8	1.10257 (11)	0.79292 (6)	0.79082 (6)	0.01487 (15)
H8	1.0023	0.7622	0.7915	0.018*
C9	1.24526 (11)	0.77794 (6)	0.86569 (6)	0.01609 (16)
H9	1.2423	0.7366	0.9172	0.019*
C10	1.39254 (11)	0.82316 (6)	0.86564 (7)	0.01755 (17)
H10	1.4898	0.8127	0.9169	0.021*
C11	1.39663 (11)	0.88376 (6)	0.79017 (7)	0.01806 (17)
H11	1.4963	0.9154	0.7905	0.022*
C12	1.25445 (11)	0.89810 (6)	0.71397 (7)	0.01584 (16)
H12	1.2583	0.9385	0.6617	0.019*
C13	0.66058 (10)	1.07755 (5)	0.70249 (6)	0.01229 (14)
C14	0.49136 (11)	1.08311 (6)	0.65773 (7)	0.01553 (16)
H14	0.4499	1.0639	0.5908	0.019*
C15	0.38351 (11)	1.11734 (6)	0.71286 (8)	0.01927 (17)
H15	0.2674	1.1215	0.6835	0.023*
C16	0.44528 (12)	1.14540 (6)	0.81051 (8)	0.01993 (18)
H16	0.3711	1.1683	0.8480	0.024*
C17	0.61525 (13)	1.14025 (7)	0.85386 (7)	0.02118 (18)
H17	0.6568	1.1602	0.9205	0.025*
C18	0.72483 (11)	1.10607 (6)	0.80006 (7)	0.01731 (16)
H18	0.8410	1.1023	0.8293	0.021*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01266 (10)	0.01083 (10)	0.01277 (10)	0.00014 (6)	0.00347 (7)	-0.00027 (6)
01	0.0121 (3)	0.0164 (3)	0.0166 (3)	0.0018 (2)	0.0022 (2)	-0.0024 (2)
O2	0.0230 (3)	0.0180 (3)	0.0123 (3)	0.0022 (2)	0.0046 (2)	0.0020 (2)
03	0.0131 (3)	0.0166 (3)	0.0276 (3)	-0.0022 (2)	0.0059 (2)	-0.0041 (2)
O4	0.0288 (4)	0.0321 (4)	0.0171 (3)	-0.0077 (3)	0.0053 (3)	-0.0090 (3)
05	0.0263 (3)	0.0146 (3)	0.0199 (3)	-0.0044(2)	0.0036 (3)	-0.0014 (2)
N1	0.0122 (3)	0.0127 (3)	0.0134 (3)	0.0013 (2)	0.0028 (2)	-0.0020 (2)
C1	0.0137 (3)	0.0113 (3)	0.0120 (3)	0.0005 (3)	0.0036 (3)	-0.0004 (3)
C2	0.0143 (3)	0.0112 (3)	0.0130 (3)	0.0014 (3)	0.0044 (3)	0.0007 (3)
C3	0.0151 (4)	0.0130 (3)	0.0204 (4)	-0.0004 (3)	0.0076 (3)	-0.0018 (3)
C4	0.0162 (4)	0.0142 (4)	0.0139 (3)	0.0003 (3)	0.0054 (3)	-0.0020 (3)
C5	0.0122 (3)	0.0170 (4)	0.0165 (4)	0.0008 (3)	0.0047 (3)	-0.0037 (3)
C6	0.0315 (5)	0.0157 (4)	0.0376 (6)	-0.0070 (4)	0.0126 (4)	-0.0047 (4)
C7	0.0139 (3)	0.0118 (3)	0.0123 (3)	0.0014 (3)	0.0034 (3)	-0.0009 (3)
C8	0.0161 (4)	0.0140 (4)	0.0146 (3)	0.0000 (3)	0.0039 (3)	0.0004 (3)

supporting information

C9	0.0193 (4)	0.0147 (4)	0.0142 (4)	0.0028 (3)	0.0037 (3)	0.0010 (3)
C10	0.0155 (4)	0.0203 (4)	0.0160 (4)	0.0038 (3)	0.0020(3)	-0.0015 (3)
C11	0.0139 (4)	0.0218 (4)	0.0188 (4)	-0.0007 (3)	0.0045 (3)	-0.0013 (3)
C12	0.0154 (4)	0.0168 (4)	0.0161 (4)	-0.0006 (3)	0.0050(3)	0.0005 (3)
C13	0.0129 (3)	0.0105 (3)	0.0138 (3)	0.0004 (3)	0.0036 (3)	-0.0004(3)
C14	0.0137 (3)	0.0147 (4)	0.0173 (4)	0.0003 (3)	0.0018 (3)	0.0003 (3)
C15	0.0146 (4)	0.0162 (4)	0.0281 (5)	0.0016 (3)	0.0071 (3)	0.0018 (3)
C16	0.0234 (4)	0.0137 (4)	0.0268 (5)	0.0016 (3)	0.0141 (4)	0.0000 (3)
C17	0.0259 (4)	0.0212 (4)	0.0178 (4)	0.0000 (3)	0.0078 (3)	-0.0051 (3)
C18	0.0165 (4)	0.0192 (4)	0.0155 (4)	0.0004 (3)	0.0022 (3)	-0.0036 (3)

Geometric parameters (Å, °)

S1—O2	1.4444 (7)	C6—H6C	0.9800
S1—O3	1.4417 (7)	C7—C12	1.3933 (12)
S1—C13	1.7646 (8)	C7—C8	1.3985 (12)
S1—C2	1.7914 (8)	C8—C9	1.3898 (12)
01—N1	1.4630 (9)	C8—H8	0.9500
O1—C3	1.4278 (10)	C9—C10	1.3931 (13)
O4—C5	1.2034 (11)	С9—Н9	0.9500
O5—C5	1.3333 (11)	C10—C11	1.3911 (13)
O5—C6	1.4483 (12)	C10—H10	0.9500
N1-C1	1.4865 (11)	C11—C12	1.3956 (12)
N1-C4	1.4551 (10)	C11—H11	0.9500
C1—C7	1.5092 (11)	C12—H12	0.9500
C1—C2	1.5524 (11)	C13—C14	1.3896 (11)
C1—H1	1.0000	C13—C18	1.3914 (12)
C2—C3	1.5410 (12)	C14—C15	1.3937 (13)
С2—Н2	1.0000	C14—H14	0.9500
С3—НЗА	0.9900	C15—C16	1.3871 (14)
С3—Н3В	0.9900	C15—H15	0.9500
C4—C5	1.5182 (12)	C16—C17	1.3909 (14)
C4—H4A	0.9900	C16—H16	0.9500
C4—H4B	0.9900	C17—C18	1.3918 (13)
С6—Н6А	0.9800	C17—H17	0.9500
С6—Н6В	0.9800	C18—H18	0.9500
O2—S1—C2	109.21 (4)	O5—C6—H6C	109.5
O2—S1—C13	108.66 (4)	H6A—C6—H6B	109.5
O3—S1—O2	118.25 (4)	H6A—C6—H6C	109.5
O3—S1—C2	107.56 (4)	H6B—C6—H6C	109.5
O3—S1—C13	109.03 (4)	C8—C7—C1	120.30 (7)
C13—S1—C2	103.07 (4)	C12—C7—C1	119.99 (7)
C3-01-N1	101.44 (6)	C12—C7—C8	119.70 (8)
C5—O5—C6	116.45 (8)	С7—С8—Н8	120.0
01—N1—C1	102.73 (6)	C9—C8—C7	119.90 (8)
C4—N1—O1	104.87 (6)	С9—С8—Н8	120.0
C4—N1—C1	112.00 (7)	C8—C9—C10	120.43 (8)

N1—C1—C2	101.25 (6)	С8—С9—Н9	119.8
N1—C1—C7	109.99 (7)	С10—С9—Н9	119.8
N1—C1—H1	110.3	С9—С10—Н10	120.1
C2—C1—H1	110.3	C11—C10—C9	119.73 (8)
C7—C1—C2	114.21 (7)	C11—C10—H10	120.1
C7—C1—H1	110.3	C10—C11—C12	120.09 (8)
S1—C2—H2	109.6	C10—C11—H11	120.0
C1—C2—S1	110.55 (5)	C12—C11—H11	120.0
C1—C2—H2	109.6	C7—C12—C11	120.14 (8)
$C_3 - C_2 - S_1$	113.67 (6)	C7—C12—H12	119.9
C3—C2—C1	103.50 (6)	C11—C12—H12	119.9
C3—C2—H2	109.6	C14-C13-S1	119.75 (6)
$01 - C_3 - C_2$	104 72 (6)	C14-C13-C18	121 79 (8)
01-C3-H3A	110.8	C18 - C13 - S1	118 46 (6)
01-C3-H3B	110.8	C13 - C14 - C15	118.80 (8)
C^2 — C^3 — H^3A	110.8	C13—C14—H14	120.6
$C_2 = C_3 = H_3 B$	110.8	C_{15} C_{14} H_{14}	120.6
H_{3A} C_{3} H_{3B}	108.9	C_{14} C_{15} H_{15}	119.9
N1 - C4 - C5	111 12 (7)	C_{16} C_{15} C_{14}	120.16(8)
N1 - C4 - H4A	109.4	C16 - C15 - H15	110.0
N1—C4—H4B	109.4	C_{15} C_{16} C_{17}	120.32 (8)
$C_5 - C_4 - H_{4A}$	109.1	$C_{15} - C_{16} - H_{16}$	119.8
$C_5 - C_4 - H_{4B}$	109.1	C_{17} C_{16} H_{16}	119.8
H4A - C4 - H4B	108.0	C_{16} C_{17} C_{18}	120 34 (9)
04-C5-05	124 17 (9)	C16 - C17 - H17	119.8
04-C5-C4	12447(9)	C18 - C17 - H17	119.8
05-C5-C4	111 40 (7)	C_{13} C_{18} C_{17}	118 58 (8)
05-C6-H6A	109.5	C13 - C18 - H18	120.7
05-C6-H6B	109.5	C17 - C18 - H18	120.7
	109.5		120.7
$0^{2}-81-C^{2}-C^{1}$	74 55 (6)	C7 - C1 - C2 - C3	-13354(7)
02 - 81 - C2 - C3	-41.32(7)	$N_1 - C_1 - C_7 - C_8$	-45.64(10)
03 - 81 - C2 - C1	-54 94 (6)	N1-C1-C7-C12	135 35 (8)
03 - 1 - 02 - 03	-170.82(6)	C_{2} C_{1} C_{7} C_{8}	67 39 (10)
$C_{13} = S_{1} = C_{2} = C_{1}$	-170.06(6)	$C_2 - C_1 - C_7 - C_{12}$	-111.62.(9)
$C_{13} = S_{1} = C_{2} = C_{3}$	74.06 (6)	S1-C2-C3-O1	104.22 (7)
02 = 12 = 02 = 02	22.31 (8)	C1 - C2 - C3 - O1	-15.74(8)
02 - 13 - 13 - 11	-15813(7)	N1-C4-C5-O4	132.00(9)
03 - 13 - 13 - 14	152 47 (7)	N1-C4-C5-05	-4940(9)
03 - 11 - 113 - 118	-27.97(8)	C1-C7-C8-C9	-179.03(8)
$C_{2}=S_{1}=C_{13}=C_{14}$	-9347(7)	C12-C7-C8-C9	-0.02(13)
$C_2 = S_1 = C_{13} = C_{18}$	86 09 (7)	C1 - C7 - C12 - C11	178.06 (8)
$C_{3} = 01 = N_{1} = C_{1}$	-52.69(7)	C8-C7-C12-C11	-0.95(13)
$C_{3} - O_{1} - N_{1} - C_{4}$	-169.90(6)	C7—C8—C9—C10	0.46 (13)
N1-01-C3-C2	41.37 (7)	C8—C9—C10—C11	0.06 (13)
C6-05-C5-04	-2.30(13)	C9—C10—C11—C12	-1.03(14)
C6—O5—C5—C4	179.09 (8)	C10-C11-C12-C7	1.48 (14)
01—N1—C1—C2	40.94 (7)	S1—C13—C14—C15	178.83 (7)

1 (2 10 (0)		0.50 (1.0)
162.10 (6)	C18 - C13 - C14 - C15	-0.72 (13)
152.97 (7)	S1-C13-C18-C17	-178.97 (7)
-85.88 (8)	C14-C13-C18-C17	0.59 (14)
-74.22 (8)	C13—C14—C15—C16	0.17 (13)
175.10 (7)	C14-C15-C16-C17	0.50 (14)
-137.47 (5)	C15—C16—C17—C18	-0.64 (15)
-15.40 (8)	C16—C17—C18—C13	0.10 (14)
104.39 (7)		
	162.10 (6) 152.97 (7) -85.88 (8) -74.22 (8) 175.10 (7) -137.47 (5) -15.40 (8) 104.39 (7)	162.10 (6) $C18$ — $C13$ — $C14$ — $C15$ $152.97 (7)$ $S1$ — $C13$ — $C18$ — $C17$ $-85.88 (8)$ $C14$ — $C13$ — $C18$ — $C17$ $-74.22 (8)$ $C13$ — $C14$ — $C15$ — $C16$ $175.10 (7)$ $C14$ — $C15$ — $C16$ — $C17$ $-137.47 (5)$ $C15$ — $C16$ — $C17$ — $C18$ $-15.40 (8)$ $C16$ — $C17$ — $C18$ — $C13$ $104.39 (7)$ $C18$

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H···A	D—H	H···A	D····A	D—H…A
C2—H2···O4 ⁱ	1.00	2.32	3.2778 (11)	159
C14—H14…O2 ⁱⁱ	0.95	2.48	3.3326 (11)	150
С15—Н15…ОЗ ^{ііі}	0.95	2.60	3.4543 (12)	150
C18—H18····O5 ^{iv}	0.95	2.50	3.4401 (12)	169
C6—H6 B ···C g 1 ^v	0.98	2.74	3.6157 (12)	149

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+2, y+1/2, -z+3/2; (v) -x, y+1/2, -z+1/2.