organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o740-o741

4′-Phenyl-3,4-di­hydro-2H-spiro­[naphthalene-1,3′-[1,2,4]triazole]-5′-thione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 27 May 2014; accepted 28 May 2014; online 16 July 2014)

In the title mol­ecule, C17H15N3S, the phenyl group makes a dihedral angle of 57.29 (11)° with the mean plane of the triazole ring, which in turn makes an angle of 86.83 (12)° with the plane of the aromatic portion of the tetra­hydro­naphthalene moiety. In the crystal, mol­ecules are linked by weak C—H⋯S hydrogen bonds into supra­molecular chains propagating along the a-axis direction. Weak C—H⋯π inter­actions are also observed.

Keywords: crystal structure.

Related literature

For the synthesis of different triazole thione compounds, see: Wujec et al. (2004[Wujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251-260.]); Zamani et al. (2004[Zamani, K., Faghihi, K., Tofighi, T. & Shariatzadeh, M. R. (2004). Turk. J. Chem. 28, 95-100.]); Pitucha et al. (2007[Pitucha, M., Wujec, M. & Dobosz, M. (2007). J. Chin. Chem. Soc. 54, 69-73.]); Farghaly & El-Kashef (2006[Farghaly, A.-R. & El-Kashef, H. (2006). Arkivoc, XI, 79-90.]); Guelerman et al. (1998[Guelerman, N., Rollas, S. & Uelgen, M. (1998). Boll. Chim. Farm. 137, 140-143.]); Salgin-Gökşen et al. (2007[Salgin-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kiliç, E., Işik, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738-5751.]). For the biological activity of triazole thio­nes, see: Amir & Kumar (2007[Amir, M. & Kumar, S. (2007). Acta Pharm. 57, 31-45.]); Gokce et al. (2001[Gokce, M., Cakir, B., Erol, K. & Sahin, M. F. (2001). Arch. Pharm. 334, 279-283.]); Ezabadi et al. (2008[Ezabadi, I. R., Camoutsis, C., Zoumpoulakis, P., Geronikaki, A., Soković, M., Glamočlija, J. & Ćirić, A. (2008). Bioorg. Med. Chem. 16, 355-360.]); Mazzone et al. (1981[Mazzone, G., Bonina, F., Reina, R. A. & Blandino, G. (1981). Il Farmaco, 36, 181-196.]); Küçükgüzel et al. (2008[Küçükgüzel, I., Tatar, E., Küçükgüzel, Ş. G., Rollas, S. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 381-392.]); Dogan et al. (2005[Dogan, H. N., Duran, A. & Rollas, S. (2005). Indian J. Chem. Sect. B, 44, 2301-2307.]); Kane et al. (1994[Kane, J. M., Staeger, M. A., Dalton, C. R., Miller, F. P., Dudley, M. W., Ogden, A. M. L., Kehne, J. H., Ketteler, H. J., McCloskey, T. C., Senyah, Y., Chmieleweski, P. A. & Miller, J. A. (1994). J. Med. Chem. 37, 125-132.]); Kane et al. (1988[Kane, J. M., Dudley, M. K., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253-1258.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3S

  • Mr = 293.39

  • Orthorhombic, P 21 21 21

  • a = 6.2091 (9) Å

  • b = 13.1804 (19) Å

  • c = 17.391 (3) Å

  • V = 1423.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • 0.25 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.98

  • 25736 measured reflections

  • 3564 independent reflections

  • 3274 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.04

  • 3564 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack x determined using 1312 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the benzene ring of the 1,2,3,4-tetra­hydro­naphthalene group.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S1i 0.95 2.86 3.568 (3) 132
C6—H6⋯Cg3ii 0.95 2.84 3.602 (2) 138
C16—H16⋯Cg3iii 0.95 2.90 3.676 (3) 139
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazole thiones have been prepared by different methods based mostly on cyclodehydration of thiosemicarbazides with a variety of basic reagents such as sodium hydroxide (Wujec et al., 2004; Zamani et al., 2004; Pitucha et al., 2007), potassium hydroxide (Farghaly & El-Kashef, 2006), sodium carbonate (Guelerman et al., 1998) and triethylamine (Salgin-Gökşen et al., 2007). On other hand the pharmacological properties such as anti-inflammatory, analgesic (Amir & Kumar, 2007; Gokce et al., 2001), anti-bacterial, anti-fungal (Ezabadi et al., 2008; Mazzone et al., 1981), anti-tubercular, anti-viral (Küçükgüzel et al., 2008), anti-tumoral (Dogan et al., 2005), anti-convulsant (Kane et al., 1994) and anti-depressant (Kane et al., 1988) activities have been reported for mercapto-and thione-substituted 1,2,4-triazole systems. Based on above findings, we herein report the use of chloranil as a dehydrogenating agent of (1E)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one N-phenylthiosemicarbazone to give the corresponding triazole thione compound.

In the title compound, the phenyl group (C3–C8) attached to N3 makes a dihedral angle of 57.29 (11)° with the mean plane of the triazole ring (N1–N3/C1/C2) which in turn makes an angle of 86.83 (12)° with the plane of the aromatic portion (C12–C17) of the tetrahydronaphthalene moiety (Fig. 1). A Cremer-Pople analysis of the conformation of the ring C2/C9–C12/C17 gave puckering parameters Q(2) = 0.356 (3) Å, Q(3) = -0.332 (3) Å and ϕ(2) = 275.4 (4)°. In the solid there are no unusual intermolecular contacts. Only weak C—H···S and C—H···π interactions are observed (Table 1, Fig. 2).

Related literature top

For the synthesis of different triazole thione compounds, see: Wujec et al. (2004); Zamani et al. (2004); Pitucha et al. (2007); Farghaly & El-Kashef (2006); Guelerman et al. (1998); Salgin-Gökşen et al. (2007). For the biological activity of triazole thiones, see: Amir & Kumar (2007); Gokce et al. (2001); Ezabadi et al. (2008); Mazzone et al. (1981); Küçükgüzel et al. (2008); Dogan et al. (2005); Kane et al. (1994); Kane et al. (1988).

Experimental top

A mixture of 1 mmol (299 mg) of (1E)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one N-phenylthiosemicarbazone and 1 mmol (246 mg) of 2,3,5,6-tetrachloro-1,4-benzoquinone in 30 ml dry ethyl acetate was stirred for 96 h at room temperature. The precipitate was filtered off, dried under vacuum and recrytallized from ethanol to give pure orange crystals.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95-0.99 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing viewed down the a axis. Hydrogen atoms are omitted.
4'-Phenyl-3,4-dihydro-2H-spiro[naphthalene-1,3'-[1,2,4]triazole]-5'-thione top
Crystal data top
C17H15N3SF(000) = 616
Mr = 293.39Dx = 1.369 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9998 reflections
a = 6.2091 (9) Åθ = 2.3–28.3°
b = 13.1804 (19) ŵ = 0.22 mm1
c = 17.391 (3) ÅT = 150 K
V = 1423.3 (4) Å3Column, orange
Z = 40.25 × 0.15 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3564 independent reflections
Radiation source: fine-focus sealed tube3274 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.3660 pixels mm-1θmax = 28.3°, θmin = 1.9°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1717
Tmin = 0.80, Tmax = 0.98l = 2323
25736 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.4193P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.26 e Å3
3564 reflectionsΔρmin = 0.15 e Å3
190 parametersAbsolute structure: Flack x determined using 1312 quotients (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (3)
Crystal data top
C17H15N3SV = 1423.3 (4) Å3
Mr = 293.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.2091 (9) ŵ = 0.22 mm1
b = 13.1804 (19) ÅT = 150 K
c = 17.391 (3) Å0.25 × 0.15 × 0.08 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3564 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3274 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.98Rint = 0.048
25736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.15 e Å3
3564 reflectionsAbsolute structure: Flack x determined using 1312 quotients (Parsons et al., 2013)
190 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62076 (10)0.54064 (5)0.53367 (3)0.0310 (2)
N10.6979 (4)0.57824 (16)0.68377 (12)0.0330 (6)
N20.6462 (3)0.54877 (15)0.74954 (11)0.0306 (6)
N30.4806 (3)0.44434 (13)0.66343 (10)0.0222 (5)
C10.5921 (3)0.51596 (16)0.62549 (13)0.0252 (6)
C20.5003 (3)0.45985 (17)0.74710 (12)0.0231 (6)
C30.3302 (3)0.37544 (16)0.62918 (11)0.0207 (6)
C40.3432 (3)0.27253 (16)0.64403 (12)0.0240 (6)
C50.1925 (4)0.20741 (17)0.61087 (13)0.0258 (6)
C60.0339 (4)0.24503 (18)0.56279 (12)0.0266 (6)
C70.0221 (4)0.34798 (18)0.54906 (12)0.0270 (6)
C80.1688 (3)0.41375 (17)0.58248 (12)0.0241 (6)
C90.2844 (4)0.48971 (19)0.78250 (13)0.0291 (7)
C100.3014 (4)0.4969 (2)0.86981 (14)0.0346 (8)
C110.3616 (4)0.39487 (19)0.90331 (13)0.0315 (7)
C120.5517 (4)0.34643 (17)0.86358 (12)0.0243 (6)
C130.6703 (4)0.27160 (18)0.90093 (13)0.0292 (7)
C140.8448 (4)0.22515 (18)0.86675 (14)0.0314 (7)
C150.9049 (4)0.25245 (18)0.79299 (14)0.0295 (7)
C160.7902 (4)0.32656 (18)0.75447 (12)0.0245 (6)
C170.6145 (4)0.37395 (16)0.78893 (11)0.0216 (5)
H40.453500.246500.676400.0290*
H50.198800.136700.621400.0310*
H60.066400.200200.539400.0320*
H70.087500.374000.516400.0320*
H80.158800.484700.573400.0290*
H9A0.238200.556000.761500.0350*
H9B0.174200.438600.768600.0350*
H10A0.412000.547800.883900.0420*
H10B0.161800.519300.891400.0420*
H11A0.395800.403500.958500.0380*
H11B0.236200.348800.899400.0380*
H130.629900.251900.951500.0350*
H140.923500.174600.893800.0380*
H151.024300.220400.769000.0350*
H160.831700.345400.703900.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (3)0.0327 (3)0.0274 (3)0.0027 (3)0.0043 (2)0.0093 (2)
N10.0365 (11)0.0290 (10)0.0336 (11)0.0093 (9)0.0021 (9)0.0033 (8)
N20.0339 (10)0.0242 (10)0.0336 (10)0.0065 (9)0.0046 (9)0.0017 (8)
N30.0257 (9)0.0210 (10)0.0199 (8)0.0036 (7)0.0028 (7)0.0013 (7)
C10.0243 (10)0.0216 (11)0.0298 (11)0.0001 (8)0.0004 (9)0.0021 (8)
C20.0261 (9)0.0217 (10)0.0214 (10)0.0032 (9)0.0022 (8)0.0029 (8)
C30.0248 (10)0.0223 (10)0.0151 (9)0.0019 (8)0.0002 (8)0.0011 (8)
C40.0264 (10)0.0238 (10)0.0217 (9)0.0010 (8)0.0047 (9)0.0016 (8)
C50.0314 (11)0.0214 (11)0.0246 (10)0.0027 (9)0.0011 (9)0.0009 (8)
C60.0263 (10)0.0311 (12)0.0224 (10)0.0040 (9)0.0029 (8)0.0058 (9)
C70.0250 (10)0.0332 (12)0.0227 (11)0.0036 (9)0.0061 (9)0.0018 (9)
C80.0286 (11)0.0216 (10)0.0221 (10)0.0037 (8)0.0025 (9)0.0014 (8)
C90.0282 (11)0.0299 (12)0.0293 (11)0.0035 (9)0.0017 (10)0.0044 (9)
C100.0372 (13)0.0374 (14)0.0292 (12)0.0028 (11)0.0060 (10)0.0088 (10)
C110.0334 (12)0.0390 (14)0.0221 (11)0.0033 (11)0.0055 (10)0.0027 (9)
C120.0276 (10)0.0264 (11)0.0189 (10)0.0076 (8)0.0006 (8)0.0037 (8)
C130.0398 (13)0.0270 (12)0.0207 (10)0.0064 (9)0.0014 (9)0.0010 (9)
C140.0389 (13)0.0255 (11)0.0299 (11)0.0008 (9)0.0090 (10)0.0028 (9)
C150.0269 (10)0.0298 (12)0.0318 (12)0.0005 (9)0.0013 (9)0.0016 (9)
C160.0228 (9)0.0305 (12)0.0202 (10)0.0037 (9)0.0012 (8)0.0007 (9)
C170.0228 (9)0.0240 (10)0.0179 (9)0.0048 (9)0.0026 (8)0.0010 (8)
Geometric parameters (Å, º) top
S1—C11.639 (2)C13—C141.379 (3)
N1—N21.250 (3)C14—C151.384 (3)
N1—C11.460 (3)C15—C161.382 (3)
N2—C21.482 (3)C16—C171.393 (3)
N3—C11.344 (3)C4—H40.9500
N3—C21.475 (3)C5—H50.9500
N3—C31.432 (3)C6—H60.9500
C2—C91.527 (3)C7—H70.9500
C2—C171.521 (3)C8—H80.9500
C3—C41.383 (3)C9—H9A0.9900
C3—C81.385 (3)C9—H9B0.9900
C4—C51.395 (3)C10—H10A0.9900
C5—C61.384 (3)C10—H10B0.9900
C6—C71.380 (3)C11—H11A0.9900
C7—C81.385 (3)C11—H11B0.9900
C9—C101.525 (3)C13—H130.9500
C10—C111.513 (4)C14—H140.9500
C11—C121.509 (3)C15—H150.9500
C12—C131.392 (3)C16—H160.9500
C12—C171.403 (3)
N2—N1—C1110.2 (2)C12—C17—C16120.0 (2)
N1—N2—C2112.12 (19)C3—C4—H4120.00
C1—N3—C2110.15 (17)C5—C4—H4120.00
C1—N3—C3125.25 (18)C4—C5—H5120.00
C2—N3—C3123.53 (17)C6—C5—H5120.00
S1—C1—N1121.04 (16)C5—C6—H6120.00
S1—C1—N3132.35 (17)C7—C6—H6120.00
N1—C1—N3106.61 (19)C6—C7—H7120.00
N2—C2—N3100.87 (16)C8—C7—H7120.00
N2—C2—C9108.74 (18)C3—C8—H8120.00
N2—C2—C17106.86 (16)C7—C8—H8120.00
N3—C2—C9111.15 (17)C2—C9—H9A109.00
N3—C2—C17114.04 (17)C2—C9—H9B109.00
C9—C2—C17114.10 (18)C10—C9—H9A109.00
N3—C3—C4120.40 (17)C10—C9—H9B109.00
N3—C3—C8118.97 (19)H9A—C9—H9B108.00
C4—C3—C8120.61 (19)C9—C10—H10A110.00
C3—C4—C5119.16 (19)C9—C10—H10B110.00
C4—C5—C6120.5 (2)C11—C10—H10A110.00
C5—C6—C7119.7 (2)C11—C10—H10B110.00
C6—C7—C8120.5 (2)H10A—C10—H10B108.00
C3—C8—C7119.6 (2)C10—C11—H11A109.00
C2—C9—C10110.90 (19)C10—C11—H11B109.00
C9—C10—C11110.2 (2)C12—C11—H11A109.00
C10—C11—C12113.14 (19)C12—C11—H11B109.00
C11—C12—C13120.0 (2)H11A—C11—H11B108.00
C11—C12—C17122.1 (2)C12—C13—H13119.00
C13—C12—C17117.9 (2)C14—C13—H13119.00
C12—C13—C14122.0 (2)C13—C14—H14120.00
C13—C14—C15119.7 (2)C15—C14—H14120.00
C14—C15—C16119.6 (2)C14—C15—H15120.00
C15—C16—C17120.8 (2)C16—C15—H15120.00
C2—C17—C12120.4 (2)C15—C16—H16120.00
C2—C17—C16119.55 (18)C17—C16—H16120.00
C1—N1—N2—C21.3 (3)N3—C2—C17—C1638.4 (3)
N2—N1—C1—S1176.99 (17)C9—C2—C17—C1216.1 (3)
N2—N1—C1—N32.6 (3)C9—C2—C17—C16167.6 (2)
N1—N2—C2—N30.3 (2)N3—C3—C4—C5178.98 (19)
N1—N2—C2—C9116.6 (2)C8—C3—C4—C50.5 (3)
N1—N2—C2—C17119.8 (2)N3—C3—C8—C7179.93 (18)
C2—N3—C1—S1176.77 (17)C4—C3—C8—C71.4 (3)
C2—N3—C1—N12.7 (2)C3—C4—C5—C61.0 (3)
C3—N3—C1—S18.3 (3)C4—C5—C6—C71.5 (3)
C3—N3—C1—N1171.17 (19)C5—C6—C7—C80.6 (3)
C1—N3—C2—N22.0 (2)C6—C7—C8—C30.9 (3)
C1—N3—C2—C9113.2 (2)C2—C9—C10—C1161.8 (3)
C1—N3—C2—C17116.1 (2)C9—C10—C11—C1249.2 (3)
C3—N3—C2—N2170.63 (17)C10—C11—C12—C13159.1 (2)
C3—N3—C2—C955.5 (3)C10—C11—C12—C1721.2 (3)
C3—N3—C2—C1775.2 (2)C11—C12—C13—C14179.9 (2)
C1—N3—C3—C4130.6 (2)C17—C12—C13—C140.1 (4)
C1—N3—C3—C850.9 (3)C11—C12—C17—C24.2 (3)
C2—N3—C3—C462.4 (3)C11—C12—C17—C16179.6 (2)
C2—N3—C3—C8116.1 (2)C13—C12—C17—C2176.1 (2)
N2—C2—C9—C1074.6 (2)C13—C12—C17—C160.2 (3)
N3—C2—C9—C10175.21 (19)C12—C13—C14—C150.4 (4)
C17—C2—C9—C1044.5 (3)C13—C14—C15—C160.4 (4)
N2—C2—C17—C12104.1 (2)C14—C15—C16—C170.2 (4)
N2—C2—C17—C1672.2 (2)C15—C16—C17—C2176.1 (2)
N3—C2—C17—C12145.4 (2)C15—C16—C17—C120.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the benzene ring of the 1,2,3,4-tetrahydronaphthalene group.
D—H···AD—HH···AD···AD—H···A
C7—H7···S1i0.952.863.568 (3)132
C6—H6···Cg3ii0.952.843.602 (2)138
C16—H16···Cg3iii0.952.903.676 (3)139
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the benzene ring of the 1,2,3,4-tetrahydronaphthalene group.
D—H···AD—HH···AD···AD—H···A
C7—H7···S1i0.952.863.568 (3)132
C6—H6···Cg3ii0.952.843.602 (2)138
C16—H16···Cg3iii0.952.903.676 (3)139
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAmir, M. & Kumar, S. (2007). Acta Pharm. 57, 31–45.  CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDogan, H. N., Duran, A. & Rollas, S. (2005). Indian J. Chem. Sect. B, 44, 2301–2307.  Google Scholar
First citationEzabadi, I. R., Camoutsis, C., Zoumpoulakis, P., Geronikaki, A., Soković, M., Glamočlija, J. & Ćirić, A. (2008). Bioorg. Med. Chem. 16, 355–360.  Web of Science CrossRef Google Scholar
First citationFarghaly, A.-R. & El-Kashef, H. (2006). Arkivoc, XI, 79–90.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGokce, M., Cakir, B., Erol, K. & Sahin, M. F. (2001). Arch. Pharm. 334, 279–283.  CAS Google Scholar
First citationGuelerman, N., Rollas, S. & Uelgen, M. (1998). Boll. Chim. Farm. 137, 140–143.  PubMed Google Scholar
First citationKane, J. M., Dudley, M. K., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKane, J. M., Staeger, M. A., Dalton, C. R., Miller, F. P., Dudley, M. W., Ogden, A. M. L., Kehne, J. H., Ketteler, H. J., McCloskey, T. C., Senyah, Y., Chmieleweski, P. A. & Miller, J. A. (1994). J. Med. Chem. 37, 125–132.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKüçükgüzel, I., Tatar, E., Küçükgüzel, Ş. G., Rollas, S. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 381–392.  Web of Science PubMed Google Scholar
First citationMazzone, G., Bonina, F., Reina, R. A. & Blandino, G. (1981). Il Farmaco, 36, 181–196.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPitucha, M., Wujec, M. & Dobosz, M. (2007). J. Chin. Chem. Soc. 54, 69–73.  CAS Google Scholar
First citationSalgin-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kiliç, E., Işik, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738–5751.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251–260.  PubMed CAS Google Scholar
First citationZamani, K., Faghihi, K., Tofighi, T. & Shariatzadeh, M. R. (2004). Turk. J. Chem. 28, 95–100.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o740-o741
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds