organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Cyclo­hexyl­­idene)amino]-3-(prop-2-en-1-yl)thio­urea

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 27 May 2014; accepted 24 June 2014; online 25 June 2014)

The asymmetric unit of the title compound, C10H17N3S, consists of three symmetry-independent mol­ecules with distinctly different conformations, as indicated for example by the C—N—C—C torsion angles of −155.9 (3), 89.9 (3) and 81.1 (4)° along the bond between thio­urea and allyl units. In the crystal, mol­ecules are connected via N—H⋯N and N—H⋯S hydrogen bonds into chains extending along [110] that are further associated through C—H⋯N inter­actions into layers parallel to (001). The allyl group in one of the independent mol­ecules is disordered over two sets of sites with an occupancy ratio of 0.853 (6):0.147 (6).

Keywords: crystal structure.

Related literature

For the use of thio­semicarbazides as inter­mediates in the synthesis of different heterocyclic compounds, see: Mague et al. (2014[Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o366-o367.]); Mohamed et al. (2014[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o640.]); Akkurt et al. (2014a[Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014a). Acta Cryst. E70, o478-o479.]). For the bioactivity of thio­semicarbazones, see: Bahat et al. (2006[Bahat, M. A., Siddiqui, N. & Khan, S. A. (2006). Indian J. Pharm. Sci. 68, 120-124.]); Qandil et al. (2006[Qandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta Pharm. Sci. 48, 95-107.]); Singh et al. (2001[Singh, N. K., Singh, S. B., Shrivastav, A. & Singh, S. M. (2001). Proc. Indian Acad. Sci. (Chem. Sci.), 113, 257-273.]; Kalyoncuoğlu et al. (1992[Kalyoncuoğlu, N., Rollas, S., Sür-Altiner, D., Yeğenoğlu, Y. & Anğ, Ö. (1992). Pharmazie, 47, 796-797.]) Bahadur & Goel (1976[Bahadur, S. & Goel, A. K. (1976). Indian J. Pharm. 38, 71-73.]). For the synthesis of the title compound, see: Akkurt et al. (2014b[Akkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014b). Acta Cryst. E70, o359.]).

[Scheme 1]

Experimental

Crystal data
  • C10H17N3S

  • Mr = 211.32

  • Triclinic, [P \overline 1]

  • a = 8.4772 (15) Å

  • b = 11.180 (2) Å

  • c = 19.766 (4) Å

  • α = 77.864 (3)°

  • β = 82.777 (3)°

  • γ = 74.879 (3)°

  • V = 1763.0 (5) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 K

  • 0.26 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.65, Tmax = 0.98

  • 31443 measured reflections

  • 8701 independent reflections

  • 5402 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.217

  • S = 1.04

  • 8701 reflections

  • 383 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯S1i 0.91 2.47 3.356 (2) 164
N1—H1A⋯N6 0.91 2.40 3.185 (3) 145
N2—H2A⋯S3ii 0.91 2.42 3.290 (2) 161
C10—H10B⋯N9iii 0.99 2.67 3.590 (4) 155
N4—H4A⋯N3 0.91 2.15 2.979 (3) 152
N5—H5A⋯N9 0.91 2.24 3.153 (3) 176
C16—H16B⋯N9 0.99 2.42 3.410 (4) 177
N7—H7⋯S2 0.91 2.51 3.363 (2) 155
C26—H26A⋯N2iv 0.99 2.67 3.626 (4) 163
C26—H26A⋯N3iv 0.99 2.60 3.499 (4) 152
Symmetry codes: (i) x+1, y-1, z; (ii) x-1, y+1, z; (iii) x, y+1, z; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

It is well known that thiosemicarbazides are the key intermediates used in the synthesis of many heterocyclic compounds such as thiazolidinones (Mague et al., 2014), triazols (Mohamed et al., 2014) and thiazoles (Akkurt et al., 2014a). Thiosemicarbazone derivatives have displayed various pharmacological properties such as analgesic (Bahat et al., 2006), anti-bacterial (Qandil et al., 2006), anti-fungal, anti-tumoral (Singh et al., 2001; Kalyoncuoğlu et al., 1992) and anti-tubercular (Bahadur & Goel, 1976) activities. In view of these findings and as part of ongoing research in the domain of heterocyclic compounds of the 1,2,4-triazole class with expected biological activity we report the synthesis and crystal structure of the title compound.

The asymmetric unit consists of three independent molecules having distinctly different conformations as indicated by the torsion angles C4–N1–C3–C2 (-155.9 (3)°), C14–N4–C13–C12 (89.9 (3)°) and C24–N7–C23–C22 (81.1 (4)°) for the allyl group. These molecules are associated via N—H···N hydrogen bonds (Fig. 1 and Table 1).

The packing consists of layers parallel to (001) formed by molecules joined via N—H···N hydrogen bonds, N—H···S and C—H···N interactions (Fig. 2 and Table 1).

Related literature top

For the use of thiosemicarbazides as intermediates in the synthesis of different heterocyclic compounds, see: Mague et al. (2014); Mohamed et al. (2014); Akkurt et al. (2014a). For the bioactivity of thiosemicarbazones, see: Bahat et al. (2006); Qandil et al. (2006); Singh et al. (2001; Kalyoncuoğlu et al. (1992) Bahadur & Goel (1976). For the synthesis of the title compound, see: Akkurt et al. (2014b).

Experimental top

The title compound was prepared according to our previously reported method (Akkurt et al., 2014b). Colourless crystals suitable for X-ray diffraction were obtained by crystallization from ethanol (m.p. 438 K).

Refinement top

H atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen (except H8 on N8) were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. There wasn't a clear indication of the H8 atom on N8 from the difference map, despite seeing all of the others on N but it couldn't be seen any significant difference in the bond distances between the molecule with N8 and the other two so it was put it in the calculated position. In the molecule 1 (with S1), atoms C1, C2 and C3 of the allyl group are disordered over two sites, with refined occupancies of 0.853 (6) and 0.147 (6).

Structure description top

It is well known that thiosemicarbazides are the key intermediates used in the synthesis of many heterocyclic compounds such as thiazolidinones (Mague et al., 2014), triazols (Mohamed et al., 2014) and thiazoles (Akkurt et al., 2014a). Thiosemicarbazone derivatives have displayed various pharmacological properties such as analgesic (Bahat et al., 2006), anti-bacterial (Qandil et al., 2006), anti-fungal, anti-tumoral (Singh et al., 2001; Kalyoncuoğlu et al., 1992) and anti-tubercular (Bahadur & Goel, 1976) activities. In view of these findings and as part of ongoing research in the domain of heterocyclic compounds of the 1,2,4-triazole class with expected biological activity we report the synthesis and crystal structure of the title compound.

The asymmetric unit consists of three independent molecules having distinctly different conformations as indicated by the torsion angles C4–N1–C3–C2 (-155.9 (3)°), C14–N4–C13–C12 (89.9 (3)°) and C24–N7–C23–C22 (81.1 (4)°) for the allyl group. These molecules are associated via N—H···N hydrogen bonds (Fig. 1 and Table 1).

The packing consists of layers parallel to (001) formed by molecules joined via N—H···N hydrogen bonds, N—H···S and C—H···N interactions (Fig. 2 and Table 1).

For the use of thiosemicarbazides as intermediates in the synthesis of different heterocyclic compounds, see: Mague et al. (2014); Mohamed et al. (2014); Akkurt et al. (2014a). For the bioactivity of thiosemicarbazones, see: Bahat et al. (2006); Qandil et al. (2006); Singh et al. (2001; Kalyoncuoğlu et al. (1992) Bahadur & Goel (1976). For the synthesis of the title compound, see: Akkurt et al. (2014b).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound with intermolecular hydrogen bonds shown as dotted lines. Ellipsoids are drawn at the 50% probability level. Only the major contributor to the disordered allyl group in the molecule 1 (with S1) is shown.
[Figure 2] Fig. 2. Packing viewed down the c axis showing intermolecular hydrogen bonding interactions as dotted lines (blue: N—H···N; yellow: N—H···S; black: C—H···N). For the sake of clarity, H atoms, not involved in hydrogen bonds, and minor component of the disordered group have been omitted.
1-[(Cyclohexylidene)amino]-3-(prop-2-en-1-yl)thiourea top
Crystal data top
C10H17N3SZ = 6
Mr = 211.32F(000) = 684
Triclinic, P1Dx = 1.194 Mg m3
a = 8.4772 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.180 (2) ÅCell parameters from 9052 reflections
c = 19.766 (4) Åθ = 2.4–28.2°
α = 77.864 (3)°µ = 0.24 mm1
β = 82.777 (3)°T = 150 K
γ = 74.879 (3)°Plate, colourless
V = 1763.0 (5) Å30.26 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8701 independent reflections
Radiation source: fine-focus sealed tube5402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 8.3660 pixels mm-1θmax = 28.4°, θmin = 1.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1414
Tmin = 0.65, Tmax = 0.98l = 2626
31443 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.111P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8701 reflectionsΔρmax = 0.70 e Å3
383 parametersΔρmin = 0.60 e Å3
Crystal data top
C10H17N3Sγ = 74.879 (3)°
Mr = 211.32V = 1763.0 (5) Å3
Triclinic, P1Z = 6
a = 8.4772 (15) ÅMo Kα radiation
b = 11.180 (2) ŵ = 0.24 mm1
c = 19.766 (4) ÅT = 150 K
α = 77.864 (3)°0.26 × 0.15 × 0.10 mm
β = 82.777 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
8701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
5402 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.98Rint = 0.080
31443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0722 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.04Δρmax = 0.70 e Å3
8701 reflectionsΔρmin = 0.60 e Å3
383 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.18746 (10)1.02518 (8)0.63133 (4)0.0415 (2)
N10.0924 (3)0.8466 (2)0.64330 (12)0.0324 (6)
H1A0.17360.80450.67170.039*
N20.0116 (3)0.9571 (2)0.73177 (11)0.0260 (5)
H2A0.06791.00470.75710.031*
N30.1448 (3)0.8754 (2)0.76609 (11)0.0258 (5)
C10.2643 (5)0.6623 (4)0.5143 (2)0.0625 (11)0.853 (6)
H1B0.28470.72530.47610.075*0.853 (6)
H1C0.31540.57600.51380.075*0.853 (6)
C20.1662 (5)0.6941 (4)0.5672 (2)0.0444 (11)0.853 (6)
H20.14990.62750.60400.053*0.853 (6)
C30.0807 (4)0.8189 (4)0.57564 (18)0.0550 (11)0.853 (6)
H3A0.03630.83120.56840.066*0.853 (6)
H3B0.12490.87990.53940.066*0.853 (6)
C1A0.2643 (5)0.6623 (4)0.5143 (2)0.0625 (11)0.147 (6)
H1A10.18970.60950.52340.075*0.147 (6)
H1A20.36620.63770.48860.075*0.147 (6)
C2A0.2270 (15)0.7682 (12)0.5368 (10)0.0444 (11)0.147 (6)
H2A10.30620.81720.52610.053*0.147 (6)
C3A0.0807 (4)0.8189 (4)0.57564 (18)0.0550 (11)0.147 (6)
H3A10.00970.75910.58230.066*0.147 (6)
H3A20.02320.89800.54670.066*0.147 (6)
C40.0192 (3)0.9360 (3)0.67085 (14)0.0274 (6)
C50.2028 (3)0.9152 (3)0.81122 (14)0.0253 (6)
C60.3500 (4)0.8286 (3)0.84516 (15)0.0362 (7)
H6A0.44810.86110.82700.043*
H6B0.36780.74410.83330.043*
C70.3291 (4)0.8170 (3)0.92401 (16)0.0411 (8)
H7A0.24350.77080.94310.049*
H7B0.43310.76790.94410.049*
C80.2810 (4)0.9459 (3)0.94482 (16)0.0398 (8)
H8A0.37110.98900.92970.048*
H8B0.26280.93560.99600.048*
C90.1254 (4)1.0258 (3)0.91177 (16)0.0378 (7)
H9A0.09771.11000.92490.045*
H9B0.03360.98560.92970.045*
C100.1460 (4)1.0411 (3)0.83286 (15)0.0306 (6)
H10A0.04011.08650.81330.037*
H10B0.22681.09200.81430.037*
S20.04448 (9)0.38536 (7)0.81703 (4)0.0344 (2)
N40.0610 (3)0.6257 (2)0.80237 (12)0.0295 (5)
H4A0.12150.68420.78920.035*
N50.2582 (3)0.5009 (2)0.74072 (12)0.0293 (5)
H5A0.30120.42130.73260.035*
N60.3309 (3)0.6004 (2)0.72156 (12)0.0288 (5)
C110.0870 (5)0.7195 (4)0.96373 (19)0.0531 (10)
H11A0.15710.79920.94730.064*
H11B0.05300.70031.00960.064*
C120.0371 (4)0.6360 (3)0.92302 (16)0.0405 (8)
H120.03290.55730.94110.049*
C130.0823 (3)0.6559 (3)0.85079 (15)0.0341 (7)
H13A0.15750.60230.84890.041*
H13B0.14140.74500.83640.041*
C140.1222 (3)0.5116 (3)0.78668 (14)0.0266 (6)
C150.4660 (4)0.5871 (3)0.68289 (16)0.0341 (7)
C160.5607 (4)0.4732 (3)0.65407 (19)0.0447 (8)
H16A0.55880.49140.60290.054*
H16B0.50880.40200.67260.054*
C170.7356 (4)0.4370 (3)0.6734 (2)0.0528 (10)
H17A0.79920.36820.64940.063*
H17B0.73810.40500.72400.063*
C180.8153 (4)0.5470 (3)0.6541 (2)0.0502 (9)
H18A0.82490.57270.60300.060*
H18B0.92710.52060.67040.060*
C190.7170 (4)0.6586 (4)0.6860 (2)0.0511 (9)
H19A0.76880.73050.67040.061*
H19B0.71680.63580.73720.061*
C200.5420 (4)0.6971 (3)0.66504 (19)0.0424 (8)
H20A0.47730.76510.68940.051*
H20B0.54130.73000.61450.051*
S30.72249 (10)0.06142 (9)0.84757 (4)0.0438 (2)
N70.4364 (3)0.2322 (2)0.84226 (12)0.0302 (5)
H70.33930.26470.82240.036*
N80.5182 (3)0.1342 (2)0.74897 (12)0.0280 (5)
H80.60120.08970.72360.034*
N90.3906 (3)0.2225 (2)0.71413 (12)0.0281 (5)
C210.5004 (6)0.4744 (4)0.9126 (2)0.0694 (12)
H21A0.39130.49940.93200.083*
H21B0.57010.53090.90450.083*
C220.5541 (5)0.3631 (4)0.89692 (18)0.0481 (9)
H220.66380.34130.87750.058*
C230.4558 (4)0.2665 (3)0.90719 (15)0.0342 (7)
H23A0.51050.19010.93900.041*
H23B0.34620.30010.92930.041*
C240.5503 (3)0.1497 (3)0.81134 (14)0.0280 (6)
C250.3286 (3)0.1857 (3)0.66890 (14)0.0277 (6)
C260.3739 (4)0.0583 (3)0.64931 (15)0.0324 (6)
H26A0.28570.01430.66760.039*
H26B0.47560.00790.67090.039*
C270.4000 (4)0.0670 (3)0.57133 (16)0.0379 (7)
H27A0.41640.01790.56020.046*
H27B0.50030.09710.55410.046*
C280.2550 (4)0.1561 (3)0.53470 (16)0.0429 (8)
H28A0.27840.16280.48390.051*
H28B0.15680.12170.54830.051*
C290.2207 (5)0.2855 (3)0.55305 (17)0.0488 (9)
H29A0.12260.34040.53050.059*
H29B0.31470.32340.53520.059*
C300.1925 (4)0.2789 (3)0.63118 (17)0.0453 (9)
H30A0.18310.36330.64180.054*
H30B0.08790.25480.64770.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (4)0.0547 (5)0.0338 (4)0.0140 (4)0.0074 (3)0.0156 (4)
N10.0211 (12)0.0413 (14)0.0319 (12)0.0078 (10)0.0051 (9)0.0177 (11)
N20.0182 (11)0.0256 (12)0.0302 (11)0.0064 (9)0.0024 (9)0.0106 (9)
N30.0206 (12)0.0242 (12)0.0287 (11)0.0037 (9)0.0026 (9)0.0072 (9)
C10.062 (3)0.060 (2)0.056 (2)0.016 (2)0.0015 (19)0.031 (2)
C20.053 (3)0.046 (2)0.038 (2)0.0102 (19)0.0007 (18)0.0207 (18)
C30.041 (2)0.075 (3)0.0433 (19)0.0215 (18)0.0136 (15)0.0359 (18)
C1A0.062 (3)0.060 (2)0.056 (2)0.016 (2)0.0015 (19)0.031 (2)
C2A0.053 (3)0.046 (2)0.038 (2)0.0102 (19)0.0007 (18)0.0207 (18)
C3A0.041 (2)0.075 (3)0.0433 (19)0.0215 (18)0.0136 (15)0.0359 (18)
C40.0198 (13)0.0309 (15)0.0289 (13)0.0003 (11)0.0007 (10)0.0090 (11)
C50.0213 (13)0.0241 (14)0.0280 (13)0.0007 (11)0.0013 (10)0.0071 (11)
C60.0271 (16)0.0392 (17)0.0385 (16)0.0069 (13)0.0087 (12)0.0141 (13)
C70.0398 (19)0.0418 (19)0.0378 (16)0.0016 (15)0.0114 (14)0.0079 (14)
C80.0381 (18)0.0473 (19)0.0334 (15)0.0014 (15)0.0072 (13)0.0146 (14)
C90.0365 (17)0.0382 (17)0.0389 (16)0.0005 (14)0.0020 (13)0.0184 (14)
C100.0305 (16)0.0259 (14)0.0366 (15)0.0042 (12)0.0052 (12)0.0102 (12)
S20.0239 (4)0.0279 (4)0.0488 (5)0.0030 (3)0.0033 (3)0.0092 (3)
N40.0225 (12)0.0242 (12)0.0375 (13)0.0019 (9)0.0072 (10)0.0116 (10)
N50.0221 (12)0.0221 (11)0.0413 (13)0.0003 (9)0.0065 (10)0.0124 (10)
N60.0211 (12)0.0240 (12)0.0384 (13)0.0003 (9)0.0048 (10)0.0098 (10)
C110.057 (2)0.057 (2)0.047 (2)0.0156 (19)0.0145 (17)0.0212 (18)
C120.0359 (18)0.0404 (18)0.0391 (17)0.0022 (14)0.0107 (13)0.0109 (14)
C130.0230 (15)0.0309 (15)0.0425 (17)0.0039 (12)0.0086 (12)0.0133 (13)
C140.0176 (13)0.0249 (14)0.0339 (14)0.0030 (11)0.0018 (10)0.0084 (11)
C150.0241 (15)0.0304 (16)0.0447 (17)0.0015 (12)0.0011 (12)0.0124 (13)
C160.0281 (17)0.0439 (19)0.061 (2)0.0027 (14)0.0117 (15)0.0234 (17)
C170.0316 (19)0.040 (2)0.076 (3)0.0067 (15)0.0092 (17)0.0147 (18)
C180.0176 (16)0.057 (2)0.069 (2)0.0004 (15)0.0019 (15)0.0107 (19)
C190.0313 (19)0.052 (2)0.072 (3)0.0131 (16)0.0013 (17)0.0159 (19)
C200.0339 (18)0.0333 (17)0.057 (2)0.0068 (14)0.0084 (15)0.0101 (15)
S30.0250 (4)0.0626 (6)0.0341 (4)0.0172 (4)0.0075 (3)0.0194 (4)
N70.0190 (12)0.0371 (14)0.0328 (12)0.0051 (10)0.0028 (9)0.0173 (11)
N80.0193 (11)0.0289 (12)0.0315 (12)0.0086 (9)0.0049 (9)0.0124 (10)
N90.0199 (11)0.0270 (12)0.0332 (12)0.0069 (9)0.0039 (9)0.0112 (10)
C210.083 (3)0.052 (2)0.083 (3)0.018 (2)0.013 (3)0.027 (2)
C220.044 (2)0.059 (2)0.0467 (19)0.0097 (18)0.0062 (15)0.0238 (17)
C230.0267 (15)0.0422 (17)0.0314 (14)0.0046 (13)0.0012 (11)0.0186 (13)
C240.0206 (14)0.0311 (15)0.0300 (14)0.0005 (11)0.0003 (10)0.0095 (12)
C250.0182 (13)0.0331 (15)0.0298 (13)0.0023 (11)0.0017 (10)0.0120 (12)
C260.0300 (16)0.0334 (16)0.0355 (15)0.0057 (13)0.0043 (12)0.0118 (13)
C270.0349 (17)0.0428 (18)0.0378 (16)0.0033 (14)0.0038 (13)0.0180 (14)
C280.0364 (18)0.061 (2)0.0345 (16)0.0107 (16)0.0052 (13)0.0157 (15)
C290.048 (2)0.049 (2)0.0439 (19)0.0028 (17)0.0214 (16)0.0037 (16)
C300.0345 (18)0.048 (2)0.0474 (18)0.0163 (15)0.0186 (14)0.0185 (16)
Geometric parameters (Å, º) top
S1—C41.688 (3)C15—C201.492 (4)
N1—C41.341 (3)C15—C161.499 (4)
N1—C31.455 (4)C16—C171.507 (5)
N1—H1A0.9099C16—H16A0.9900
N2—C41.343 (3)C16—H16B0.9900
N2—N31.401 (3)C17—C181.512 (5)
N2—H2A0.9099C17—H17A0.9900
N3—C51.276 (3)C17—H17B0.9900
C1—C21.303 (5)C18—C191.517 (5)
C1—H1B0.9500C18—H18A0.9900
C1—H1C0.9500C18—H18B0.9900
C2—C31.428 (5)C19—C201.518 (5)
C2—H20.9500C19—H19A0.9900
C3—H3A0.9900C19—H19B0.9900
C3—H3B0.9900C20—H20A0.9900
C2A—H2A10.9500C20—H20B0.9900
C5—C101.498 (4)S3—C241.683 (3)
C5—C61.501 (4)N7—C241.334 (3)
C6—C71.528 (4)N7—C231.454 (3)
C6—H6A0.9900N7—H70.9099
C6—H6B0.9900N8—C241.350 (3)
C7—C81.521 (4)N8—N91.401 (3)
C7—H7A0.9900N8—H80.9100
C7—H7B0.9900N9—C251.277 (3)
C8—C91.524 (4)C21—C221.297 (5)
C8—H8A0.9900C21—H21A0.9500
C8—H8B0.9900C21—H21B0.9500
C9—C101.526 (4)C22—C231.496 (5)
C9—H9A0.9900C22—H220.9500
C9—H9B0.9900C23—H23A0.9900
C10—H10A0.9900C23—H23B0.9900
C10—H10B0.9900C25—C301.495 (4)
S2—C141.678 (3)C25—C261.495 (4)
N4—C141.331 (3)C26—C271.515 (4)
N4—C131.461 (3)C26—H26A0.9900
N4—H4A0.9099C26—H26B0.9900
N5—C141.370 (3)C27—C281.520 (4)
N5—N61.372 (3)C27—H27A0.9900
N5—H5A0.9099C27—H27B0.9900
N6—C151.288 (4)C28—C291.511 (5)
C11—C121.312 (4)C28—H28A0.9900
C11—H11A0.9500C28—H28B0.9900
C11—H11B0.9500C29—C301.522 (5)
C12—C131.481 (4)C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—H13A0.9900C30—H30A0.9900
C13—H13B0.9900C30—H30B0.9900
C4—N1—C3122.8 (2)C15—C16—H16B109.6
C4—N1—H1A113.0C17—C16—H16B109.6
C3—N1—H1A124.2H16A—C16—H16B108.1
C4—N2—N3118.5 (2)C16—C17—C18112.0 (3)
C4—N2—H2A120.6C16—C17—H17A109.2
N3—N2—H2A117.8C18—C17—H17A109.2
C5—N3—N2117.6 (2)C16—C17—H17B109.2
C2—C1—H1B120.0C18—C17—H17B109.2
C2—C1—H1C120.0H17A—C17—H17B107.9
H1B—C1—H1C120.0C17—C18—C19111.5 (3)
C1—C2—C3126.7 (4)C17—C18—H18A109.3
C1—C2—H2116.7C19—C18—H18A109.3
C3—C2—H2116.7C17—C18—H18B109.3
C2—C3—N1113.9 (3)C19—C18—H18B109.3
C2—C3—H3A108.8H18A—C18—H18B108.0
N1—C3—H3A108.8C18—C19—C20110.6 (3)
C2—C3—H3B108.8C18—C19—H19A109.5
N1—C3—H3B108.8C20—C19—H19A109.5
H3A—C3—H3B107.7C18—C19—H19B109.5
N1—C4—N2116.7 (2)C20—C19—H19B109.5
N1—C4—S1123.5 (2)H19A—C19—H19B108.1
N2—C4—S1119.8 (2)C15—C20—C19110.4 (3)
N3—C5—C10127.8 (2)C15—C20—H20A109.6
N3—C5—C6116.8 (2)C19—C20—H20A109.6
C10—C5—C6115.3 (2)C15—C20—H20B109.6
C5—C6—C7111.6 (2)C19—C20—H20B109.6
C5—C6—H6A109.3H20A—C20—H20B108.1
C7—C6—H6A109.3C24—N7—C23123.7 (2)
C5—C6—H6B109.3C24—N7—H7117.3
C7—C6—H6B109.3C23—N7—H7118.9
H6A—C6—H6B108.0C24—N8—N9118.8 (2)
C8—C7—C6111.3 (3)C24—N8—H8117.8
C8—C7—H7A109.4N9—N8—H8118.6
C6—C7—H7A109.4C25—N9—N8116.6 (2)
C8—C7—H7B109.4C22—C21—H21A120.0
C6—C7—H7B109.4C22—C21—H21B120.0
H7A—C7—H7B108.0H21A—C21—H21B120.0
C7—C8—C9110.5 (3)C21—C22—C23124.7 (4)
C7—C8—H8A109.6C21—C22—H22117.6
C9—C8—H8A109.6C23—C22—H22117.6
C7—C8—H8B109.6N7—C23—C22112.3 (3)
C9—C8—H8B109.6N7—C23—H23A109.1
H8A—C8—H8B108.1C22—C23—H23A109.1
C8—C9—C10111.5 (3)N7—C23—H23B109.1
C8—C9—H9A109.3C22—C23—H23B109.1
C10—C9—H9A109.3H23A—C23—H23B107.9
C8—C9—H9B109.3N7—C24—N8116.5 (2)
C10—C9—H9B109.3N7—C24—S3123.7 (2)
H9A—C9—H9B108.0N8—C24—S3119.7 (2)
C5—C10—C9110.8 (2)N9—C25—C30117.2 (3)
C5—C10—H10A109.5N9—C25—C26127.7 (2)
C9—C10—H10A109.5C30—C25—C26115.1 (2)
C5—C10—H10B109.5C25—C26—C27111.7 (2)
C9—C10—H10B109.5C25—C26—H26A109.3
H10A—C10—H10B108.1C27—C26—H26A109.3
C14—N4—C13123.6 (3)C25—C26—H26B109.3
C14—N4—H4A118.6C27—C26—H26B109.3
C13—N4—H4A116.7H26A—C26—H26B107.9
C14—N5—N6118.9 (2)C26—C27—C28111.6 (3)
C14—N5—H5A113.8C26—C27—H27A109.3
N6—N5—H5A126.3C28—C27—H27A109.3
C15—N6—N5119.1 (2)C26—C27—H27B109.3
C12—C11—H11A120.0C28—C27—H27B109.3
C12—C11—H11B120.0H27A—C27—H27B108.0
H11A—C11—H11B120.0C29—C28—C27111.0 (3)
C11—C12—C13124.6 (3)C29—C28—H28A109.4
C11—C12—H12117.7C27—C28—H28A109.4
C13—C12—H12117.7C29—C28—H28B109.4
N4—C13—C12112.1 (2)C27—C28—H28B109.4
N4—C13—H13A109.2H28A—C28—H28B108.0
C12—C13—H13A109.2C28—C29—C30111.3 (3)
N4—C13—H13B109.2C28—C29—H29A109.4
C12—C13—H13B109.2C30—C29—H29A109.4
H13A—C13—H13B107.9C28—C29—H29B109.4
N4—C14—N5115.3 (2)C30—C29—H29B109.4
N4—C14—S2125.5 (2)H29A—C29—H29B108.0
N5—C14—S2119.2 (2)C25—C30—C29111.8 (3)
N6—C15—C20116.9 (3)C25—C30—H30A109.2
N6—C15—C16128.3 (3)C29—C30—H30A109.2
C20—C15—C16114.8 (3)C25—C30—H30B109.2
C15—C16—C17110.5 (3)C29—C30—H30B109.2
C15—C16—H16A109.6H30A—C30—H30B107.9
C17—C16—H16A109.6
C4—N2—N3—C5159.5 (3)N6—C15—C16—C17125.8 (4)
C1—C2—C3—N1133.2 (4)C20—C15—C16—C1752.9 (4)
C4—N1—C3—C2155.9 (3)C15—C16—C17—C1852.3 (4)
C3—N1—C4—N2176.0 (3)C16—C17—C18—C1955.4 (4)
C3—N1—C4—S11.1 (5)C17—C18—C19—C2056.1 (4)
N3—N2—C4—N17.8 (4)N6—C15—C20—C19124.5 (3)
N3—N2—C4—S1175.00 (19)C16—C15—C20—C1954.3 (4)
N2—N3—C5—C100.0 (4)C18—C19—C20—C1554.5 (4)
N2—N3—C5—C6177.4 (2)C24—N8—N9—C25157.6 (3)
N3—C5—C6—C7132.0 (3)C24—N7—C23—C2281.1 (4)
C10—C5—C6—C750.4 (4)C21—C22—C23—N7118.9 (4)
C5—C6—C7—C852.1 (4)C23—N7—C24—N8175.8 (3)
C6—C7—C8—C956.3 (4)C23—N7—C24—S37.5 (4)
C7—C8—C9—C1057.5 (4)N9—N8—C24—N714.1 (4)
N3—C5—C10—C9131.6 (3)N9—N8—C24—S3169.0 (2)
C6—C5—C10—C951.0 (3)N8—N9—C25—C30179.9 (3)
C8—C9—C10—C553.9 (3)N8—N9—C25—C261.2 (4)
C14—N5—N6—C15174.4 (3)N9—C25—C26—C27131.3 (3)
C14—N4—C13—C1289.9 (3)C30—C25—C26—C2749.8 (4)
C11—C12—C13—N4129.4 (4)C25—C26—C27—C2852.2 (3)
C13—N4—C14—N5179.4 (2)C26—C27—C28—C2956.3 (4)
C13—N4—C14—S22.0 (4)C27—C28—C29—C3056.2 (4)
N6—N5—C14—N47.8 (4)N9—C25—C30—C29131.0 (3)
N6—N5—C14—S2173.5 (2)C26—C25—C30—C2949.9 (4)
N5—N6—C15—C20178.5 (3)C28—C29—C30—C2552.5 (4)
N5—N6—C15—C160.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···S1i0.912.473.356 (2)164
N1—H1A···N30.912.142.620 (3)112
N1—H1A···N60.912.403.185 (3)145
N2—H2A···S3ii0.912.423.290 (2)161
C10—H10A···S3ii0.992.763.516 (3)133
C10—H10B···N9iii0.992.673.590 (4)155
N4—H4A···N30.912.152.979 (3)152
N5—H5A···N90.912.243.153 (3)176
C16—H16B···N90.992.423.410 (4)177
N7—H7···S20.912.513.363 (2)155
N7—H7···N90.912.252.638 (3)105
C26—H26A···N2iv0.992.673.626 (4)163
C26—H26A···N3iv0.992.603.499 (4)152
C26—H26B···S1i0.992.913.619 (3)129
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···S1i0.912.473.356 (2)164
N1—H1A···N60.912.403.185 (3)145
N2—H2A···S3ii0.912.423.290 (2)161
C10—H10B···N9iii0.992.673.590 (4)155
N4—H4A···N30.912.152.979 (3)152
N5—H5A···N90.912.243.153 (3)176
C16—H16B···N90.992.423.410 (4)177
N7—H7···S20.912.513.363 (2)155
C26—H26A···N2iv0.992.673.626 (4)163
C26—H26A···N3iv0.992.603.499 (4)152
Symmetry codes: (i) x+1, y1, z; (ii) x1, y+1, z; (iii) x, y+1, z; (iv) x, y1, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014a). Acta Cryst. E70, o478–o479.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkkurt, M., Mohamed, S. K., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2014b). Acta Cryst. E70, o359.  CSD CrossRef IUCr Journals Google Scholar
First citationBahadur, S. & Goel, A. K. (1976). Indian J. Pharm. 38, 71–73.  CAS Google Scholar
First citationBahat, M. A., Siddiqui, N. & Khan, S. A. (2006). Indian J. Pharm. Sci. 68, 120–124.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKalyoncuoğlu, N., Rollas, S., Sür-Altiner, D., Yeğenoğlu, Y. & Anğ, Ö. (1992). Pharmazie, 47, 796–797.  PubMed CAS Web of Science Google Scholar
First citationMague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o366–o367.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o640.  CSD CrossRef IUCr Journals Google Scholar
First citationQandil, A. M., Tumah, H. N. & Hassan, M. A. (2006). Acta Pharm. Sci. 48, 95–107.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, N. K., Singh, S. B., Shrivastav, A. & Singh, S. M. (2001). Proc. Indian Acad. Sci. (Chem. Sci.), 113, 257–273.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds