organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Pyridin-2-yl)amino]­pyridinium 2,4,6-tri­nitro­phenolate

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska 64/13, 01601 Kyiv, Ukraine, and bDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation
*Correspondence e-mail: katerina_241992@ukr.net

(Received 23 May 2014; accepted 2 June 2014; online 14 June 2014)

In the cation of the title salt, C10H10N3+·C6H2N3O7, the pyridine and pyridinium rings are linked by an intra­molecular N—H⋯N hydrogen bond and are approximately coplanar, with a dihedral angle between their planes of 4.24 (6)°. In the crystal, the cations and anions are linked through N—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the c-axis direction. ππ stacking is observed between neighbouring chains, the centroid–centroid distances being 3.7638 (11) (between pyridinium rings) and 3.5331 (11) Å (between benzene rings).

Related literature

For uses of picric acid and picrates, see: Shriner et al. (1980[Shriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236-237. New York: Wiley.]); In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]). For related structures, see: Fritsky et al. (2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Moroz et al. (2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]); Penkova et al. (2009[Penkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]); Golenya et al. (2012[Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221-6227.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N3+·C6H2N3O7

  • Mr = 400.32

  • Monoclinic, P 21 /c

  • a = 9.1807 (8) Å

  • b = 14.5892 (12) Å

  • c = 13.1649 (10) Å

  • β = 108.925 (2)°

  • V = 1668.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.983

  • 10460 measured reflections

  • 3253 independent reflections

  • 2674 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 1.03

  • 3253 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.92 (2) 1.86 (2) 2.618 (2) 139 (2)
N1—H1N⋯O4i 0.92 (2) 2.45 (2) 3.056 (2) 123.8 (17)
N2—H2N⋯O1ii 0.87 (2) 1.97 (2) 2.756 (2) 149 (2)
N2—H2N⋯O2ii 0.87 (2) 2.42 (2) 3.114 (2) 136.6 (18)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Synthesis and crystallization top

The 2,2'-di­pyridyl­amine (1.71 g, 0.01 mol) was added to picric acid (2.29 g, 0.01 mol) dissolved in ethanol (50ml). The obtained mixture was stirred for 24 hours, then this solution was left at room temperature for crystallization in the air. The crystals grown within 24 hours were separated, washed with ethanol and air-dried.

Refinement top

The NH hydrogen atoms were located from the difference Fourier map and refined isotropically. Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C).

Results and discussion top

Picric acid is a common reagent widely used for isolation in crystalline state of various organic compounds, in particular, amines and alkaloids (Shriner et al., 1980). In laboratorial practice it is also used in analysis of amines and polycyclic hydro­carbons (In et al., 1997; Zaderenko et al., 1997).

In the present communication we report the molecular structure of 2-(2-pyridyl­amino)­pyridinium picrate. The crystal structure of the title compound C10H10N3+·C6H2N3O7- is ionic and consists of the protonated cation C10H10N3+ and the deprotonated picrate anion C6H2N3O7-. The cation is approximately planar. The dihedral angle between two heterocyclic rings is 4.24 (6)°. The picrate anion is not planar: the three nitro-groups [N4—O2—O3], [N5—O4—O5], [N6—O6—O7] are twisted with respect to the benzene ring, the dihedral angles between their square - least planes are 26.8 (2)°, 4.5 (1)°, 23.0 (3)°. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2006; Moroz et al., 2012; Penkova et al., 2009; Golenya et al., 2012).

The 2-(2-pyridyl­amino)­pyridinium cation and the picrate anion are connected to each other by the existence of N—H···O and N—H···N hydrogen-bonding inter­actions and form one-dimensional chains. The protonated NH pyridinium group of the 2-(2-pyridyl­amino)­pyridinium cation is involved in a bifurcated inter­molecular hydrogen bond with the oxygen atom of the nitro-group and the pyr­idyne nitro­gen atom. The second of these H-bonds is an intra­molecular. The amine oxygen atom of the 2-(2-pyridyl­amino)­pyridinium cation also forms bifurcate N2—H2···O1 and N2—H2···O2 hydrogen bonds with the oxygen atom of the nitro-group and with the oxygen atom of the deprotonated hydroxo-group of the picrate anion.

Related literature top

For uses of picric acid and picrates, see: Shriner et al. (1980); In et al. (1997); Zaderenko et al. (1997). For related structures, see: Fritsky et al. (2006); Moroz et al. (2012); Penkova et al. (2009); Golenya et al. (2012).

Structure description top

Picric acid is a common reagent widely used for isolation in crystalline state of various organic compounds, in particular, amines and alkaloids (Shriner et al., 1980). In laboratorial practice it is also used in analysis of amines and polycyclic hydro­carbons (In et al., 1997; Zaderenko et al., 1997).

In the present communication we report the molecular structure of 2-(2-pyridyl­amino)­pyridinium picrate. The crystal structure of the title compound C10H10N3+·C6H2N3O7- is ionic and consists of the protonated cation C10H10N3+ and the deprotonated picrate anion C6H2N3O7-. The cation is approximately planar. The dihedral angle between two heterocyclic rings is 4.24 (6)°. The picrate anion is not planar: the three nitro-groups [N4—O2—O3], [N5—O4—O5], [N6—O6—O7] are twisted with respect to the benzene ring, the dihedral angles between their square - least planes are 26.8 (2)°, 4.5 (1)°, 23.0 (3)°. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2006; Moroz et al., 2012; Penkova et al., 2009; Golenya et al., 2012).

The 2-(2-pyridyl­amino)­pyridinium cation and the picrate anion are connected to each other by the existence of N—H···O and N—H···N hydrogen-bonding inter­actions and form one-dimensional chains. The protonated NH pyridinium group of the 2-(2-pyridyl­amino)­pyridinium cation is involved in a bifurcated inter­molecular hydrogen bond with the oxygen atom of the nitro-group and the pyr­idyne nitro­gen atom. The second of these H-bonds is an intra­molecular. The amine oxygen atom of the 2-(2-pyridyl­amino)­pyridinium cation also forms bifurcate N2—H2···O1 and N2—H2···O2 hydrogen bonds with the oxygen atom of the nitro-group and with the oxygen atom of the deprotonated hydroxo-group of the picrate anion.

For uses of picric acid and picrates, see: Shriner et al. (1980); In et al. (1997); Zaderenko et al. (1997). For related structures, see: Fritsky et al. (2006); Moroz et al. (2012); Penkova et al. (2009); Golenya et al. (2012).

Synthesis and crystallization top

The 2,2'-di­pyridyl­amine (1.71 g, 0.01 mol) was added to picric acid (2.29 g, 0.01 mol) dissolved in ethanol (50ml). The obtained mixture was stirred for 24 hours, then this solution was left at room temperature for crystallization in the air. The crystals grown within 24 hours were separated, washed with ethanol and air-dried.

Refinement details top

The NH hydrogen atoms were located from the difference Fourier map and refined isotropically. Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional chain formed via hydrogen bonds.
[Figure 3] Fig. 3. A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-[(Pyridin-2-yl)amino]pyridinium 2,4,6-trinitrophenolate top
Crystal data top
C10H10N3+·C6H2N3O7F(000) = 824
Mr = 400.32Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3858 reflections
a = 9.1807 (8) Åθ = 2.4–29.9°
b = 14.5892 (12) ŵ = 0.13 mm1
c = 13.1649 (10) ÅT = 100 K
β = 108.925 (2)°Block, yellow
V = 1668.0 (2) Å30.25 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3253 independent reflections
Radiation source: fine-focus sealed tube2674 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.029
Detector resolution: 16 pixels mm-1θmax = 26.0°, θmin = 2.2°
φ scans and ω scans with κ offseth = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1716
Tmin = 0.974, Tmax = 0.983l = 1616
10460 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0416P)2 + 1.2391P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max < 0.001
270 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C10H10N3+·C6H2N3O7V = 1668.0 (2) Å3
Mr = 400.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1807 (8) ŵ = 0.13 mm1
b = 14.5892 (12) ÅT = 100 K
c = 13.1649 (10) Å0.25 × 0.21 × 0.18 mm
β = 108.925 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2674 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.029
10460 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.59 e Å3
3253 reflectionsΔρmin = 0.55 e Å3
270 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10222 (15)0.54091 (9)0.17771 (10)0.0236 (3)
O20.06688 (18)0.69273 (10)0.18938 (11)0.0323 (4)
O30.16715 (15)0.69936 (9)0.06137 (11)0.0259 (3)
O40.15975 (16)0.63990 (10)0.29479 (10)0.0279 (3)
O50.35245 (15)0.54601 (10)0.32327 (10)0.0282 (3)
O60.46259 (16)0.40445 (10)0.03187 (11)0.0289 (3)
O70.2807 (2)0.39426 (15)0.11952 (13)0.0702 (7)
N10.01574 (18)0.88497 (10)0.04563 (12)0.0176 (3)
H1N0.079 (3)0.8656 (16)0.0451 (18)0.036 (6)*
N20.08719 (18)0.86091 (11)0.14029 (12)0.0199 (3)
H2N0.075 (2)0.8730 (15)0.2019 (18)0.027 (6)*
N30.26368 (18)0.82539 (11)0.05248 (12)0.0213 (4)
N40.06696 (18)0.67256 (11)0.09846 (12)0.0212 (3)
N50.24186 (18)0.58829 (11)0.26247 (12)0.0210 (4)
N60.3395 (2)0.42975 (12)0.03160 (13)0.0288 (4)
C10.1325 (2)0.90766 (13)0.13575 (14)0.0206 (4)
H10.11660.90640.20350.025*
C20.2720 (2)0.93213 (13)0.12947 (15)0.0232 (4)
H20.35410.94810.19230.028*
C30.2925 (2)0.93344 (13)0.02863 (15)0.0238 (4)
H30.38940.95070.02300.029*
C40.1746 (2)0.91021 (13)0.06177 (15)0.0216 (4)
H40.18890.91130.13000.026*
C50.0325 (2)0.88481 (12)0.05260 (14)0.0173 (4)
C60.2352 (2)0.83475 (12)0.14498 (15)0.0192 (4)
C70.3446 (2)0.81826 (13)0.24528 (15)0.0242 (4)
H70.32020.82580.30960.029*
C80.4886 (2)0.79074 (14)0.24768 (17)0.0292 (5)
H80.56620.77910.31440.035*
C90.5205 (2)0.77997 (14)0.15200 (18)0.0304 (5)
H90.61930.76040.15220.036*
C100.4057 (2)0.79824 (14)0.05736 (17)0.0278 (5)
H100.42770.79140.00790.033*
C110.1351 (2)0.55224 (12)0.07926 (14)0.0170 (4)
C120.0569 (2)0.61648 (12)0.02980 (14)0.0171 (4)
C130.0877 (2)0.62673 (12)0.07851 (14)0.0176 (4)
H130.02820.66740.10550.021*
C140.2068 (2)0.57704 (12)0.14803 (14)0.0180 (4)
C150.2908 (2)0.51464 (13)0.10980 (14)0.0188 (4)
H150.37310.48140.15840.023*
C160.2538 (2)0.50156 (12)0.00165 (14)0.0190 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (8)0.0227 (7)0.0129 (6)0.0057 (6)0.0068 (6)0.0021 (6)
O20.0471 (9)0.0303 (8)0.0171 (7)0.0138 (7)0.0070 (6)0.0061 (6)
O30.0236 (7)0.0218 (7)0.0316 (8)0.0031 (6)0.0082 (6)0.0005 (6)
O40.0306 (8)0.0354 (8)0.0201 (7)0.0002 (6)0.0116 (6)0.0062 (6)
O50.0250 (7)0.0407 (9)0.0158 (7)0.0015 (6)0.0021 (6)0.0036 (6)
O60.0269 (8)0.0336 (8)0.0272 (7)0.0120 (6)0.0102 (6)0.0095 (6)
O70.0931 (15)0.0786 (14)0.0221 (9)0.0595 (12)0.0045 (9)0.0153 (9)
N10.0190 (8)0.0170 (8)0.0162 (8)0.0009 (6)0.0052 (6)0.0003 (6)
N20.0224 (8)0.0240 (8)0.0132 (8)0.0013 (7)0.0056 (6)0.0013 (7)
N30.0222 (8)0.0207 (8)0.0215 (8)0.0001 (7)0.0076 (7)0.0024 (7)
N40.0242 (8)0.0166 (8)0.0195 (8)0.0003 (7)0.0026 (7)0.0029 (7)
N50.0212 (8)0.0256 (8)0.0161 (8)0.0062 (7)0.0060 (7)0.0018 (7)
N60.0354 (10)0.0328 (10)0.0180 (8)0.0142 (8)0.0084 (7)0.0023 (8)
C10.0252 (10)0.0201 (9)0.0147 (9)0.0021 (8)0.0041 (7)0.0006 (8)
C20.0225 (10)0.0226 (10)0.0213 (10)0.0005 (8)0.0025 (8)0.0025 (8)
C30.0215 (10)0.0228 (10)0.0271 (10)0.0009 (8)0.0079 (8)0.0010 (8)
C40.0255 (10)0.0215 (10)0.0191 (9)0.0008 (8)0.0092 (8)0.0023 (8)
C50.0228 (10)0.0128 (8)0.0155 (9)0.0028 (7)0.0051 (7)0.0021 (7)
C60.0207 (9)0.0141 (9)0.0203 (9)0.0014 (7)0.0034 (7)0.0025 (7)
C70.0271 (10)0.0220 (10)0.0197 (9)0.0001 (8)0.0023 (8)0.0029 (8)
C80.0252 (11)0.0229 (10)0.0302 (11)0.0018 (8)0.0036 (8)0.0031 (9)
C90.0208 (10)0.0276 (11)0.0399 (12)0.0017 (8)0.0059 (9)0.0076 (10)
C100.0273 (11)0.0266 (11)0.0316 (11)0.0019 (9)0.0124 (9)0.0043 (9)
C110.0199 (9)0.0150 (9)0.0154 (9)0.0033 (7)0.0049 (7)0.0012 (7)
C120.0171 (9)0.0147 (9)0.0178 (9)0.0023 (7)0.0032 (7)0.0002 (7)
C130.0182 (9)0.0160 (9)0.0196 (9)0.0043 (7)0.0074 (7)0.0022 (7)
C140.0192 (9)0.0209 (9)0.0140 (9)0.0046 (7)0.0057 (7)0.0019 (7)
C150.0156 (9)0.0222 (9)0.0172 (9)0.0014 (7)0.0034 (7)0.0022 (8)
C160.0200 (9)0.0208 (9)0.0173 (9)0.0001 (8)0.0074 (8)0.0001 (8)
Geometric parameters (Å, º) top
O1—C111.243 (2)C2—H20.9500
O2—N41.233 (2)C3—C41.367 (3)
O3—N41.237 (2)C3—H30.9500
O4—N51.235 (2)C4—C51.398 (3)
O5—N51.235 (2)C4—H40.9500
O6—N61.224 (2)C6—C71.396 (3)
O7—N61.222 (2)C7—C81.371 (3)
N1—C51.351 (2)C7—H70.9500
N1—C11.357 (2)C8—C91.392 (3)
N1—H1N0.92 (2)C8—H80.9500
N2—C51.356 (2)C9—C101.372 (3)
N2—C61.394 (2)C9—H90.9500
N2—H2N0.87 (2)C10—H100.9500
N3—C61.333 (2)C11—C161.455 (3)
N3—C101.345 (2)C11—C121.456 (2)
N4—C121.454 (2)C12—C131.369 (2)
N5—C141.444 (2)C13—C141.382 (3)
N6—C161.460 (2)C13—H130.9500
C1—C21.358 (3)C14—C151.388 (3)
C1—H10.9500C15—C161.366 (2)
C2—C31.400 (3)C15—H150.9500
C5—N1—C1122.30 (16)N3—C6—C7123.52 (17)
C5—N1—H1N113.4 (14)N2—C6—C7118.76 (17)
C1—N1—H1N124.3 (14)C8—C7—C6117.67 (18)
C5—N2—C6128.13 (16)C8—C7—H7121.2
C5—N2—H2N115.1 (14)C6—C7—H7121.2
C6—N2—H2N115.7 (14)C7—C8—C9119.76 (19)
C6—N3—C10117.47 (16)C7—C8—H8120.1
O2—N4—O3122.87 (16)C9—C8—H8120.1
O2—N4—C12119.43 (15)C10—C9—C8118.38 (19)
O3—N4—C12117.69 (15)C10—C9—H9120.8
O4—N5—O5123.15 (15)C8—C9—H9120.8
O4—N5—C14118.32 (15)N3—C10—C9123.21 (19)
O5—N5—C14118.53 (15)N3—C10—H10118.4
O7—N6—O6123.04 (17)C9—C10—H10118.4
O7—N6—C16118.18 (16)O1—C11—C16124.53 (16)
O6—N6—C16118.66 (16)O1—C11—C12124.32 (16)
N1—C1—C2120.28 (17)C16—C11—C12111.13 (15)
N1—C1—H1119.9C13—C12—N4116.22 (16)
C2—C1—H1119.9C13—C12—C11124.81 (16)
C1—C2—C3118.75 (17)N4—C12—C11118.93 (15)
C1—C2—H2120.6C12—C13—C14118.97 (17)
C3—C2—H2120.6C12—C13—H13120.5
C4—C3—C2120.68 (18)C14—C13—H13120.5
C4—C3—H3119.7C13—C14—C15121.12 (16)
C2—C3—H3119.7C13—C14—N5119.48 (16)
C3—C4—C5119.23 (17)C15—C14—N5119.38 (16)
C3—C4—H4120.4C16—C15—C14119.34 (17)
C5—C4—H4120.4C16—C15—H15120.3
N1—C5—N2120.20 (16)C14—C15—H15120.3
N1—C5—C4118.76 (16)C15—C16—C11124.48 (16)
N2—C5—C4121.04 (16)C15—C16—N6115.91 (16)
N3—C6—N2117.71 (16)C11—C16—N6119.59 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.92 (2)1.86 (2)2.618 (2)139 (2)
N1—H1N···O4i0.92 (2)2.45 (2)3.056 (2)123.8 (17)
N2—H2N···O1ii0.87 (2)1.97 (2)2.756 (2)149 (2)
N2—H2N···O2ii0.87 (2)2.42 (2)3.114 (2)136.6 (18)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N30.92 (2)1.86 (2)2.618 (2)139 (2)
N1—H1N···O4i0.92 (2)2.45 (2)3.056 (2)123.8 (17)
N2—H2N···O1ii0.87 (2)1.97 (2)2.756 (2)149 (2)
N2—H2N···O2ii0.87 (2)2.42 (2)3.114 (2)136.6 (18)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by Saint Petersburg State University research grant (2013–2015, 12.38.781.2013).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationGolenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012). Inorg. Chem. 51, 6221–6227.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPenkova, L. V., Maciąg, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236–237. New York: Wiley.  Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds