organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hy­dr­oxy-2-nitro­benzaldehyde thio­semicarbazone (HNBATSC)

aDepartment of Chemistry, Sri Venkateswara University, Tirupati 517 502, India, bDepartment of Chemistry, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad 500 075, India, and cSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: ammireddyv@yahoo.co.in

(Received 23 April 2014; accepted 26 June 2014; online 2 July 2014)

The asymmetric unit of the title compound, C8H8N4O3S, consists of two independent mol­ecules. Each mol­ecule is approximately planar with dihedral angles of 8.71 (3) and 1.50 (2)° between the aromatic ring and the thio­semicarbazide moiety while the NO2 group makes dihedral angles of 29.27 (3) and 17.78 (3)° with the benzene ring. In the crystal, the molecules are linked by N—H⋯S, O—H⋯O and N—H⋯O hydrogen bonds, forming two-dimensional networks parallel to (100).

Related literature

For the crystal structures of similar Schiff base compounds see: Chattopadhyay et al. (1988[Chattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025-1028.]). For the structure of 2-hy­droxy-5-nitro­benzaldehyde thio­semicarbazone, see: Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1606.]). For general background to the biological activity and anti-tumour activity of benzaldehyde thiosemicarbazone derivatives, see: Hamre et al. (1950[Hamre, D., Brownlee, K. & Donovick, R. (1950). J. Immunol. 67, 305-305.]); Brockman et al. (1956[Brockman, R. W., Thomson, J. R., Bell, M. J. & Skipper, H. E. (1956). Cancer Res. 16, 167-170.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O3S

  • Mr = 240.24

  • Triclinic, [P \overline 1]

  • a = 7.1328 (13) Å

  • b = 8.0738 (15) Å

  • c = 17.868 (3) Å

  • α = 102.142 (16)°

  • β = 94.325 (15)°

  • γ = 95.212 (15)°

  • V = 997.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.14 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.796, Tmax = 1.000

  • 7083 measured reflections

  • 4063 independent reflections

  • 1973 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.137

  • S = 0.99

  • 4063 reflections

  • 321 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8B⋯S1i 0.80 (6) 2.59 (6) 3.323 (5) 153 (6)
N7—H7N⋯S1ii 1.07 (4) 2.22 (4) 3.264 (4) 162 (3)
N3—H3N⋯S2iii 0.95 (4) 2.41 (4) 3.324 (4) 160 (4)
N4—H4B⋯S2iv 0.86 (4) 2.51 (4) 3.373 (4) 180 (4)
O4—H4O⋯O5iii 0.76 (5) 2.27 (6) 2.960 (5) 153 (7)
C3—H3⋯O9v 0.93 2.57 3.491 (6) 168
C7—H7⋯O5v 0.93 2.79 3.295 (5) 115
N4—H4A⋯O7iii 0.87 (4) 2.48 (4) 3.066 (5) 125 (3)
O6—H6O⋯O4vi 1.01 (5) 1.81 (5) 2.810 (5) 170 (4)
N8—H8A⋯O9ii 0.98 (5) 2.39 (4) 3.002 (5) 120 (3)
C13—H13⋯O10ii 0.93 2.67 3.506 (5) 150
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y-1, z; (iv) x, y-2, z; (v) -x+2, -y+1, -z+1; (vi) x, y+1, z-1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzaldehyde­thio­semicarbazone derivatives show in vitro anti-bacterial, anti-oxidant and anti-tubercular activities. Thio­semicarbazones have also been used as second line drugs in the chemotherapy of leprosy. Since then, several workers have reported the anti-microbial activity of thio­semicarbazones against selected plant pathogenic and saprophytic fungi. The anti-viral effect of thio­semicarbazones was first demonstrated (Hamre et al., 1950). They explained that p-amino­benzaldehyde-3-thio­semicarbazone and several of its derivatives were active against vaccinia virus in mice. Anti­tumor activity against leukemia in mice was first reported (Brockman et al., 1956).

We reported here the synthesis and structural characterization of a Schiff base, 5-hy­droxy-2-nitro­benzaldehyde­thio­semicarbazone (Fig. 1). Due to the presence of potential hydrogen donor sites in the molecule, supra­molecular hydrogen bonding inter­actions in the domain of thio­semicarbazones are observed. Inter­molecular N—H···S inter­actions through R22(8) synthons result in the formation of 1D chains (Fig. 2). These 1D chains, with the aid of O—H···O inter­actions, form 2D corrugated sheets (Fig.3).

Experimental top

5-Hy­droxy-2-nitro­benzaldehyde­thio­semicarbazone (0.33 g, 2 mmol) and thio­semicarbazide (0.18 g, 2 mmol) were separately dissolved in 20 ml of ethanol and subsequently they were mixed. The resulting mixture (40 ml) was refluxed for 5 hrs. The precipitate, formed during this time, was filtered and washed with a small amount of ethanol. The purity of the product HNBATSC was checked by TLC. Finally HNBATSC was dissolved in aceto­nitrile and then slowly it was evaporated for the removal of aceto­nitrile to obtain white crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the crystal structures of similar Schiff base compounds see: Chattopadhyay et al. (1988). For the structure of 2-hydroxy-5-nitrobenzaldehyde thiosemicarbazone see: Alhadi et al. (2008). For general background to what?, see: Hamre et al. (1950); Brockman et al. (1956).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of one of the independent molecules of the title compound. Thermal ellipsoids are at the 50% probability level.
[Figure 2] Fig. 2. one-dimensional chain formed due to N—H···S interactions.
[Figure 3] Fig. 3. Combination of O—H···O and N—H···S interactions leading to the formation of two-dimensional corrugated sheet.
5-Hydroxy-2-nitrobenzaldehyde thiosemicarbazone top
Crystal data top
C8H8N4O3SZ = 4
Mr = 240.24F(000) = 496
Triclinic, P1Dx = 1.600 Mg m3
Hall symbol: -P 1Melting point: 538 K
a = 7.1328 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0738 (15) ÅCell parameters from 858 reflections
c = 17.868 (3) Åθ = 2.9–23.0°
α = 102.142 (16)°µ = 0.32 mm1
β = 94.325 (15)°T = 298 K
γ = 95.212 (15)°Block, colorless
V = 997.1 (3) Å30.30 × 0.20 × 0.14 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1973 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 26.4°, θmin = 2.9°
ω scansh = 85
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 109
Tmin = 0.796, Tmax = 1.000l = 2221
7083 measured reflections3904 standard reflections every 0 reflections
4063 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
4063 reflections(Δ/σ)max < 0.001
321 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C8H8N4O3Sγ = 95.212 (15)°
Mr = 240.24V = 997.1 (3) Å3
Triclinic, P1Z = 4
a = 7.1328 (13) ÅMo Kα radiation
b = 8.0738 (15) ŵ = 0.32 mm1
c = 17.868 (3) ÅT = 298 K
α = 102.142 (16)°0.30 × 0.20 × 0.14 mm
β = 94.325 (15)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1973 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
Rint = 0.063
Tmin = 0.796, Tmax = 1.0003904 standard reflections every 0 reflections
7083 measured reflections intensity decay: none
4063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.28 e Å3
4063 reflectionsΔρmin = 0.33 e Å3
321 parameters
Special details top

Experimental. Absorption correction: (CrysAlisPro, Agilent Technologies, 2013) Version 1.171.36.28 (release 01-02-2013 CrysAlis171 .NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47754 (18)0.25982 (13)0.26463 (6)0.0460 (3)
S20.46264 (19)1.26534 (13)0.31459 (7)0.0502 (4)
N30.6268 (5)0.0428 (4)0.3896 (2)0.0412 (10)
N20.7076 (5)0.0018 (4)0.46366 (19)0.0392 (9)
N60.6606 (5)1.0485 (4)0.1259 (2)0.0437 (9)
N80.6172 (7)1.3598 (5)0.1978 (3)0.0520 (12)
N40.6096 (6)0.3229 (5)0.3963 (3)0.0483 (11)
C70.7530 (6)0.1563 (5)0.4924 (2)0.0413 (11)
H70.73020.23760.46390.050*
N70.5833 (5)1.0750 (4)0.1944 (2)0.0451 (10)
C10.9021 (6)0.3740 (5)0.6117 (2)0.0381 (11)
C60.8416 (6)0.2067 (5)0.5711 (2)0.0388 (11)
C80.5768 (6)0.2103 (5)0.3549 (2)0.0363 (10)
C160.5603 (6)1.2346 (5)0.2306 (2)0.0405 (11)
O40.9804 (6)0.0116 (5)0.7225 (2)0.0636 (12)
C50.8744 (6)0.0787 (5)0.6102 (2)0.0426 (11)
H50.83910.03440.58530.051*
C90.7661 (6)0.6841 (5)0.0180 (2)0.0405 (11)
N10.8718 (6)0.5229 (5)0.5792 (2)0.0501 (11)
O50.9645 (5)0.6588 (4)0.6107 (2)0.0773 (12)
C130.7647 (6)0.9729 (5)0.0234 (2)0.0428 (11)
H130.74241.08380.00200.051*
C40.9566 (7)0.1144 (6)0.6837 (2)0.0455 (12)
O60.8570 (5)1.0706 (4)0.1298 (2)0.0665 (11)
C140.7334 (6)0.8488 (5)0.0184 (2)0.0397 (11)
C20.9894 (6)0.4091 (6)0.6850 (3)0.0505 (12)
H21.03050.52130.70960.061*
C100.8258 (7)0.6471 (6)0.0898 (3)0.0521 (13)
H100.84360.53550.11230.063*
O70.7578 (6)0.5092 (4)0.5244 (2)0.0791 (13)
C120.8277 (7)0.9384 (6)0.0954 (3)0.0484 (12)
C110.8594 (7)0.7740 (6)0.1289 (3)0.0533 (13)
H110.90310.74990.17730.064*
C150.6601 (7)0.8923 (5)0.0926 (2)0.0474 (12)
H150.61290.80670.11590.057*
C31.0168 (6)0.2796 (6)0.7225 (3)0.0500 (12)
H31.07440.30270.77260.060*
O100.7007 (7)0.4005 (4)0.0180 (2)0.0960 (15)
N50.7434 (6)0.5429 (5)0.0211 (3)0.0558 (12)
O90.7659 (6)0.5702 (4)0.0907 (2)0.0748 (12)
H4B0.572 (6)0.428 (5)0.376 (2)0.054 (15)*
H3N0.598 (6)0.035 (5)0.358 (2)0.069 (15)*
H7N0.534 (6)0.983 (5)0.226 (2)0.081 (15)*
H8A0.667 (7)1.338 (6)0.147 (3)0.080 (18)*
H4A0.659 (6)0.292 (5)0.444 (2)0.048 (15)*
H8B0.617 (9)1.453 (7)0.224 (4)0.13 (3)*
H6O0.891 (7)1.030 (6)0.184 (3)0.082 (18)*
H4O0.939 (9)0.096 (7)0.697 (3)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0546 (9)0.0391 (6)0.0446 (8)0.0091 (6)0.0054 (6)0.0076 (5)
S20.0669 (10)0.0391 (6)0.0465 (8)0.0115 (6)0.0140 (7)0.0084 (5)
N30.050 (3)0.035 (2)0.039 (2)0.0082 (19)0.0018 (19)0.0072 (18)
N20.042 (2)0.039 (2)0.036 (2)0.0052 (18)0.0036 (18)0.0061 (17)
N60.048 (3)0.043 (2)0.040 (2)0.0083 (19)0.0091 (19)0.0047 (18)
N80.074 (3)0.034 (2)0.048 (3)0.004 (2)0.016 (2)0.006 (2)
N40.064 (3)0.034 (2)0.046 (3)0.010 (2)0.002 (2)0.007 (2)
C70.043 (3)0.037 (2)0.047 (3)0.005 (2)0.008 (2)0.012 (2)
N70.057 (3)0.0358 (19)0.045 (2)0.007 (2)0.014 (2)0.0111 (19)
C10.037 (3)0.034 (2)0.042 (3)0.002 (2)0.008 (2)0.007 (2)
C60.032 (3)0.041 (2)0.043 (3)0.003 (2)0.007 (2)0.008 (2)
C80.030 (3)0.038 (2)0.045 (3)0.007 (2)0.009 (2)0.015 (2)
C160.047 (3)0.038 (2)0.038 (3)0.005 (2)0.001 (2)0.012 (2)
O40.092 (3)0.053 (2)0.043 (2)0.009 (2)0.010 (2)0.0098 (19)
C50.048 (3)0.035 (2)0.044 (3)0.005 (2)0.006 (2)0.006 (2)
C90.044 (3)0.040 (2)0.039 (3)0.008 (2)0.004 (2)0.010 (2)
N10.062 (3)0.036 (2)0.054 (3)0.009 (2)0.024 (2)0.008 (2)
O50.079 (3)0.0408 (19)0.109 (3)0.005 (2)0.014 (2)0.012 (2)
C130.043 (3)0.039 (2)0.048 (3)0.007 (2)0.005 (2)0.012 (2)
C40.053 (3)0.051 (3)0.034 (3)0.009 (3)0.004 (2)0.011 (2)
O60.085 (3)0.067 (2)0.052 (2)0.003 (2)0.018 (2)0.023 (2)
C140.044 (3)0.037 (2)0.038 (3)0.004 (2)0.002 (2)0.009 (2)
C20.044 (3)0.044 (3)0.057 (3)0.002 (2)0.011 (3)0.004 (2)
C100.063 (4)0.049 (3)0.042 (3)0.018 (3)0.004 (3)0.000 (2)
O70.122 (4)0.056 (2)0.059 (3)0.019 (2)0.011 (2)0.015 (2)
C120.043 (3)0.060 (3)0.045 (3)0.006 (3)0.006 (2)0.018 (3)
C110.059 (4)0.063 (3)0.041 (3)0.018 (3)0.016 (3)0.008 (2)
C150.061 (4)0.038 (2)0.044 (3)0.004 (2)0.007 (3)0.011 (2)
C30.042 (3)0.055 (3)0.050 (3)0.000 (3)0.001 (2)0.008 (3)
O100.147 (4)0.0392 (19)0.097 (3)0.009 (2)0.014 (3)0.005 (2)
N50.073 (3)0.038 (2)0.055 (3)0.011 (2)0.007 (2)0.005 (2)
O90.113 (4)0.063 (2)0.056 (2)0.020 (2)0.019 (2)0.023 (2)
Geometric parameters (Å, º) top
S1—C81.664 (4)C4—C31.381 (6)
S2—C161.682 (4)O6—C121.347 (5)
N3—N21.364 (4)C14—C151.448 (6)
N3—C81.366 (5)C2—C31.376 (5)
N2—C71.274 (5)C10—C111.370 (5)
N6—C151.276 (5)C12—C111.382 (6)
N6—N71.365 (5)O10—N51.212 (4)
N8—C161.321 (5)N5—O91.212 (4)
N4—C81.312 (5)N3—H3N0.96 (4)
C7—C61.457 (5)N8—H8A0.98 (5)
N7—C161.345 (5)N8—H8B0.80 (6)
C1—C21.368 (5)N4—H4B0.86 (4)
C1—C61.403 (5)N4—H4A0.87 (4)
C1—N11.467 (5)C7—H70.9300
C6—C51.390 (5)N7—H7N1.07 (4)
O4—C41.362 (5)O4—H4O0.76 (5)
C5—C41.359 (5)C5—H50.9300
C9—C101.363 (5)C13—H130.9300
C9—C141.401 (5)O6—H6O1.00 (5)
C9—N51.461 (5)C2—H20.9300
N1—O71.204 (4)C10—H100.9300
N1—O51.229 (4)C11—H110.9300
C13—C121.377 (5)C15—H150.9300
C13—C141.381 (5)C3—H30.9300
N2—N3—C8119.2 (3)C13—C12—C11119.9 (4)
C7—N2—N3116.2 (3)C10—C11—C12119.2 (4)
C15—N6—N7114.8 (4)N6—C15—C14119.7 (4)
N2—C7—C6118.4 (4)C2—C3—C4118.1 (4)
C16—N7—N6119.7 (3)O9—N5—O10122.0 (4)
C2—C1—C6122.1 (4)O9—N5—C9120.0 (4)
C2—C1—N1115.5 (4)O10—N5—C9118.0 (4)
C6—C1—N1122.3 (4)N2—N3—H3N127 (3)
C5—C6—C1116.0 (4)C8—N3—H3N114 (3)
C5—C6—C7117.9 (4)C16—N8—H8A122 (3)
C1—C6—C7126.2 (4)C16—N8—H8B114 (4)
N4—C8—N3116.9 (4)H8A—N8—H8B124 (5)
N4—C8—S1124.0 (4)C8—N4—H4B117 (3)
N3—C8—S1119.0 (3)C8—N4—H4A122 (3)
N8—C16—N7117.4 (4)H4B—N4—H4A121 (4)
N8—C16—S2123.4 (3)N2—C7—H7120.8
N7—C16—S2119.2 (3)C6—C7—H7120.8
C4—C5—C6121.7 (4)C16—N7—H7N112 (2)
C10—C9—C14122.7 (4)N6—N7—H7N129 (2)
C10—C9—N5116.5 (4)C4—O4—H4O108 (4)
C14—C9—N5120.8 (4)C4—C5—H5119.1
O7—N1—O5122.7 (4)C6—C5—H5119.1
O7—N1—C1119.9 (4)C12—C13—H13118.8
O5—N1—C1117.4 (4)C14—C13—H13118.8
C12—C13—C14122.5 (4)C12—O6—H6O110 (2)
C5—C4—O4121.2 (4)C1—C2—H2119.8
C5—C4—C3121.5 (4)C3—C2—H2119.8
O4—C4—C3117.3 (4)C9—C10—H10120.0
C13—C14—C9115.6 (4)C11—C10—H10120.0
C13—C14—C15119.6 (4)C10—C11—H11120.4
C9—C14—C15124.6 (4)C12—C11—H11120.4
C1—C2—C3120.5 (4)N6—C15—H15120.1
C9—C10—C11120.1 (4)C14—C15—H15120.1
O6—C12—C13117.0 (4)C2—C3—H3120.9
O6—C12—C11123.1 (5)C4—C3—H3120.9
C8—N3—N2—C7179.2 (4)C10—C9—C14—C130.2 (7)
N3—N2—C7—C6179.4 (4)N5—C9—C14—C13178.2 (4)
C15—N6—N7—C16173.7 (4)C10—C9—C14—C15176.4 (4)
C2—C1—C6—C50.5 (6)N5—C9—C14—C155.7 (7)
N1—C1—C6—C5177.9 (4)C6—C1—C2—C31.6 (7)
C2—C1—C6—C7178.0 (4)N1—C1—C2—C3176.9 (4)
N1—C1—C6—C73.6 (7)C14—C9—C10—C111.2 (8)
N2—C7—C6—C51.0 (6)N5—C9—C10—C11176.8 (4)
N2—C7—C6—C1179.4 (4)C14—C13—C12—O6178.6 (4)
N2—N3—C8—N40.4 (6)C14—C13—C12—C110.9 (7)
N2—N3—C8—S1179.8 (3)C9—C10—C11—C121.6 (7)
N6—N7—C16—N80.8 (7)O6—C12—C11—C10180.0 (4)
N6—N7—C16—S2179.3 (3)C13—C12—C11—C100.6 (8)
C1—C6—C5—C41.3 (6)N7—N6—C15—C14178.1 (4)
C7—C6—C5—C4179.9 (4)C13—C14—C15—N614.0 (7)
C2—C1—N1—O7161.7 (4)C9—C14—C15—N6170.0 (4)
C6—C1—N1—O716.8 (7)C1—C2—C3—C41.0 (7)
C2—C1—N1—O517.3 (6)C5—C4—C3—C20.8 (7)
C6—C1—N1—O5164.2 (4)O4—C4—C3—C2178.3 (4)
C6—C5—C4—O4177.1 (4)C10—C9—N5—O9150.5 (5)
C6—C5—C4—C32.0 (7)C14—C9—N5—O927.6 (7)
C12—C13—C14—C91.3 (7)C10—C9—N5—O1030.0 (7)
C12—C13—C14—C15177.6 (4)C14—C9—N5—O10152.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8B···S1i0.80 (6)2.59 (6)3.323 (5)153 (6)
N7—H7N···S1ii1.07 (4)2.22 (4)3.264 (4)162 (3)
N3—H3N···S2iii0.95 (4)2.41 (4)3.324 (4)160 (4)
N4—H4B···S2iv0.86 (4)2.51 (4)3.373 (4)180 (4)
O4—H4O···O5iii0.76 (5)2.27 (6)2.960 (5)153 (7)
C3—H3···O9v0.932.573.491 (6)168
C7—H7···O5v0.932.793.295 (5)115
N4—H4A···O7iii0.87 (4)2.48 (4)3.066 (5)125 (3)
O6—H6O···O4vi1.01 (5)1.81 (5)2.810 (5)170 (4)
N8—H8A···O9ii0.98 (5)2.39 (4)3.002 (5)120 (3)
C13—H13···O10ii0.932.673.506 (5)150
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y2, z; (v) x+2, y+1, z+1; (vi) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8B···S1i0.80 (6)2.59 (6)3.323 (5)153 (6)
N7—H7N···S1ii1.07 (4)2.22 (4)3.264 (4)162 (3)
N3—H3N···S2iii0.95 (4)2.41 (4)3.324 (4)160 (4)
N4—H4B···S2iv0.86 (4)2.51 (4)3.373 (4)180 (4)
O4—H4O···O5iii0.76 (5)2.27 (6)2.960 (5)153 (7)
C3—H3···O9v0.932.573.491 (6)168.4
C7—H7···O5v0.932.793.295 (5)115.0
N4—H4A···O7iii0.87 (4)2.48 (4)3.066 (5)125 (3)
O6—H6O···O4vi1.01 (5)1.81 (5)2.810 (5)170 (4)
N8—H8A···O9ii0.98 (5)2.39 (4)3.002 (5)120 (3)
C13—H13···O10ii0.932.673.506 (5)149.6
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y2, z; (v) x+2, y+1, z+1; (vi) x, y+1, z1.
 

Acknowledgements

MSR is grateful to the UGC, Government of India, New Delhi for financial assistance in the form of a meritorious research fellowship. The authors also thank the School of Chemistry, UGC Networking Resource centre, University of Hyderabad, for providing the single-crystal X-ray diffractometer facility. Special thanks are due to Dr Bharat Kumar Tripuramallu, School of Chemistry, University of Hyderabad, for his valuable suggestions and help in processing the data.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrockman, R. W., Thomson, J. R., Bell, M. J. & Skipper, H. E. (1956). Cancer Res. 16, 167–170.  PubMed CAS Web of Science Google Scholar
First citationChattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025–1028.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamre, D., Brownlee, K. & Donovick, R. (1950). J. Immunol. 67, 305–305.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds