organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o881-o882

4-[(5-Bromo-2-hy­dr­oxy­benzyl­­idene)amino]-3-ethyl-1H-1,2,4-triazole-5(4H)-thione

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

Edited by L. Fabian, University of East Anglia, England (Received 3 April 2014; accepted 21 July 2014; online 26 July 2014)

The title compound, C11H11BrN4OS, crystallized as a racemic twin with two symmetry-independent mol­ecules in the asymmetric unit. The dihedral angles between the benzene and triazole rings of the two independent mol­ecules are 56.41 (18) and 54.48 (18)°. An intra­molecular O—H⋯N hydrogen bond occurs in each mol­ecule. In the crystal, pairs of symmetry-independent mol­ecules are linked by pairs of almost linear N—H⋯S hydrogen bonds, forming cyclic dimers characterized by an R22(8) motif. There are weak ππ inter­actions between the benzene rings of symmetry-independent mol­ecules, with a centroid–centroid distance of 3.874 (3) Å.

Keywords: crystal structure.

Related literature

For background to the biological activity of related compounds, see: Demirbas (2004[Demirbas, N. (2004). Eur. J. Med. Chem. 39, 793-804.]); Demirbas et al. (2009[Demirbas, A., Sahin, D., Demirbas, N. & Alpay-Karaoglu, S. (2009). Eur. J. Med. Chem. 44, 2896-2903.]); Todoulou et al. (1994[Todoulou, O., Papadaki-Valiraki, A., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29E, 611-620.]); Kumar et al. (2008[Kumar, H., Javed, A. S., Khan, A. S. & Amir, M. (2008). Eur. J. Med. Chem. 43, 2688-2698.]); Kochikyan et al. (2011[Kochikyan, T. V., Samvelyan, M. A., Arutyunyan, E. V., Arutyunyan, V. S., Avetisyan, A. A., Malakyan, M. G., Vardevanyan, L. A. & Badzhinyan, S. A. (2011). Pharm. Chem. J. 44, 525-527.]); Singhal et al. (2011[Singhal, N., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chem. Pharm. Res. 3, 126-133.]); Popiołek et al. (2013[Popiołek, Ł., Kosikowska, U., Mazur, L., Dobosz, M. & Malm, A. (2013). Med. Chem. Res. 22, 3134-3147.]); Sraa (2012[Sraa, A. M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 898-905.]). For similar structures, see: Wu et al. (2012[Wu, X., Yuan, C.-X., Ma, L., Zhai, K.-L. & Zhu, M.-L. (2012). Acta Cryst. E68, o1674.]); Pannu & Hundal (2011[Pannu, A. P. S. & Hundal, M. S. (2011). J. Chem. Crystallogr. 41, 1447-1450.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orapen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-sets of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11BrN4OS

  • Mr = 327.21

  • Monoclinic, P 21

  • a = 6.323 (4) Å

  • b = 16.459 (11) Å

  • c = 12.461 (8) Å

  • β = 90.330 (9)°

  • V = 1296.8 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 298 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.350, Tmax = 0.435

  • 14802 measured reflections

  • 5222 independent reflections

  • 4285 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.065

  • S = 1.01

  • 5222 reflections

  • 328 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2514 Friedel pairs

  • Absolute structure parameter: 0.581 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.86 2.45 3.309 (3) 176
N5—H5A⋯S1ii 0.86 2.44 3.302 (3) 177
O1—H1A⋯N4 0.82 2.02 2.712 (4) 141
O2—H2⋯N8 0.82 1.99 2.695 (4) 143
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Recently, 1,2,4-triazoles and their derivatives have been the focus of a great deal of attention owing to their effective biological activities such as antimicrobial, antiviral, analgesic, anti-inflammatory, anticancer and antioxidant properties (Demirbas et al., 2004 and 2009; Kochikyan et al., 2011; Kumar et al., 2008; Singhal et al., 2011; Todoulou et al., 1994). As a result, a number of attempts were made to improve the activity of these compounds by varying the substituents on the 1,2,4-triazole nucleus (Popiołek et al., 2013; Sraa et al., 2012). Among these, the amino- and mercapto-group substituted 1,2,4-triazole ring systems represent an important group of compounds that are promising for practical application. Therefore, the title compound (I), has been synthesized and its crystal structure has been determinined.

The crystal structure is illustrated in Fig. 1. The title compound (I) crystallizes in the monoclinic space group P21 with two symmetry-independent molecules in the unit cell. The bond lengths of N4–C5 [1.274 (5) Å] and N8–C16 [1.272 (5) Å] confirm them as double bonds, which is similar to those reported in other Schiff bases (Pannu et al., 2011; Wu et al., 2012;). The molecule of (I) exists in the thione tautometic form, with CS distances of 1.673 (4) and 1.672 (4) Å, which indicates a substantial double-bond character (Allen et al., 1987).

The packing arrangement in the crystal structure of (I) is shown in Fig. 2. As a common feature of o-hydroxysalicylidene systems, the azomethine group in title compound forms intramolecular O–H···N hydrogen bonds with the neighbouring hydroxyl groups. Moreover, the crystal structure also contains intermolecular N–H···S hydrogen bonds between both independent molecules with cyclic motifs [graph set R22(8)] (Bernstein et al., 1995). The molecules are further linked via weak π-π interactions between benzene rings (Cg1 and Cg2). The hydrogen bonds and π-π interactions link the molecules into ribbon structures.

Related literature top

For background to the biological activity of related compounds, see: Demirbas (2004); Demirbas et al. (2009);Todoulou et al. (1994); Kumar et al. (2008); Kochikyan et al. (2011); Singhal et al. (2011); Popiołek et al. (2013); Sraa (2012). For similar structures, see: Wu et al. (2012); Pannu & Hundal (2011). For standard bond lengths, see: Allen et al. (1987). For graph-sets of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by condensation of 4-amino-3-ethyl- 1H-1,2,4-triazole-5(4H)-thione and 5-Br-salicylaldehyde. 0.5 mmol of 4-amino-3-ethyl-1,2,4-triazole-5-thione was thoroughly dissolved in 20 ml of ethanol with a constant stirring at 353 K. Then 0.5 mmol of 5-bromosalicylaldehyde in 10 ml ethanol was added dropwise to a solution of the above. The mixture was further refluxed for 2 h. The resulting yellow solution was filtered and the filtrate was left to stand at room temperature. The yellow crystals of compound (I) were received from the filtrate with slowly evaporating the solvent for a few days. Yield: 78%. Anal. Calcd. for C11H11BrN4OS: C 40.38, H 3.39, N 17.12%. Found: C 40.31, H 3.45, N 17.07%. IR (ν/cm-1): 3109, 3055, 2958, 1603, 1588, 1513, 1416, 1352, 1288, 1165, 1174, 967, 817, 627. UV/vis in DMSO, λmax/nm (ε 103/M-1 cm-1): 265(13.9), 343(7.77).

Refinement top

The H atoms bonded to C atoms were placed in calculated positions (C—H=0.96, 0.97 and 0.93 Å for Csp3, Csp2 and Csp atoms, respectively), assigned fixed Uiso values [Uiso(H) = 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) for all others] and treated as riding atoms. The H atoms attached to O and N atoms were found in difference electron-density maps and were refined isotropically, with Uiso(H) = 1.5 Ueq(O) or Uiso(H) = 1.2 Ueq(N) and fixed O—H (0.82 Å) and N—H (0.86 Å) bond lengths.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure with displacement ellipsoids drawn at the 30% probability level. Dotted lines represent hydrogen bonds and ππ interactions.
[Figure 2] Fig. 2. A part of the crystal structure, showing the formation of a chain of R22(8) hydrogen-bonded rings and π-π stacking between the benzene rings rings; Cg1: C6/C7/C8/C9/C10/C11, Cg2: C17/C18/C19/C20/C21/C22. Symmetry codes: i) x - 1, y. z + 1; ii) x + 1, y, z - 1. H atoms without H-bonds have been omitted for clarity.
4-[(5-Bromo-2-hydroxybenzylidene)amino]-3-ethyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C11H11BrN4OSF(000) = 656
Mr = 327.21Dx = 1.676 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4187 reflections
a = 6.323 (4) Åθ = 2.5–25.3°
b = 16.459 (11) ŵ = 3.32 mm1
c = 12.461 (8) ÅT = 298 K
β = 90.330 (9)°Block, yellow
V = 1296.8 (15) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
5222 independent reflections
Radiation source: fine-focus sealed tube4285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 26.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 77
Tmin = 0.350, Tmax = 0.435k = 2020
14802 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.031P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5222 reflectionsΔρmax = 0.28 e Å3
328 parametersΔρmin = 0.45 e Å3
1 restraintAbsolute structure: Flack (1983), 2514 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.581 (7)
Crystal data top
C11H11BrN4OSV = 1296.8 (15) Å3
Mr = 327.21Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.323 (4) ŵ = 3.32 mm1
b = 16.459 (11) ÅT = 298 K
c = 12.461 (8) Å0.40 × 0.35 × 0.30 mm
β = 90.330 (9)°
Data collection top
Bruker SMART APEXII
diffractometer
5222 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4285 reflections with I > 2σ(I)
Tmin = 0.350, Tmax = 0.435Rint = 0.033
14802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.28 e Å3
S = 1.01Δρmin = 0.45 e Å3
5222 reflectionsAbsolute structure: Flack (1983), 2514 Friedel pairs
328 parametersAbsolute structure parameter: 0.581 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.19835 (6)0.61341 (2)0.42475 (3)0.05443 (12)
S10.10279 (14)0.43885 (6)0.11498 (7)0.0394 (2)
O10.8327 (4)0.49113 (17)0.10062 (19)0.0511 (7)
H1A0.80010.50350.03910.077*
N10.2852 (5)0.50342 (19)0.2940 (2)0.0425 (8)
H10.19060.48480.33680.051*
N20.4568 (5)0.5484 (2)0.3291 (2)0.0423 (8)
N30.4567 (4)0.53213 (17)0.1540 (2)0.0313 (7)
N40.5457 (4)0.53192 (18)0.0511 (2)0.0360 (7)
C10.2787 (5)0.4913 (2)0.1880 (3)0.0325 (8)
C20.5590 (5)0.5653 (2)0.2428 (3)0.0337 (8)
C30.7562 (6)0.6128 (3)0.2360 (3)0.0438 (9)
H3A0.73310.65940.18980.053*
H3B0.86550.57950.20390.053*
C40.8317 (7)0.6420 (2)0.3461 (3)0.0529 (11)
H4A0.72320.67440.37860.079*
H4B0.95740.67410.33800.079*
H4C0.86190.59600.39090.079*
C50.4165 (6)0.5478 (2)0.0249 (3)0.0332 (8)
H50.27770.56160.00870.040*
C60.4824 (5)0.5449 (2)0.1370 (3)0.0305 (8)
C70.6786 (5)0.5157 (2)0.1695 (3)0.0343 (8)
C80.7249 (6)0.5113 (2)0.2784 (3)0.0404 (10)
H80.85310.48930.30040.048*
C90.5816 (6)0.5393 (2)0.3542 (3)0.0390 (9)
H90.61420.53700.42680.047*
C100.3887 (6)0.5707 (2)0.3211 (3)0.0362 (9)
C110.3376 (6)0.5723 (2)0.2137 (3)0.0342 (8)
H110.20630.59170.19230.041*
Br20.85545 (7)0.24611 (3)0.99904 (3)0.06106 (14)
S20.93822 (14)0.42617 (6)0.46355 (7)0.0375 (2)
O20.2087 (4)0.36500 (17)0.6796 (2)0.0480 (8)
H20.25560.36720.61840.072*
N50.7520 (5)0.36383 (19)0.2834 (2)0.0390 (8)
H5A0.84660.38270.24090.047*
N60.5811 (5)0.3204 (2)0.2478 (2)0.0401 (8)
N70.5821 (4)0.33383 (18)0.4232 (2)0.0314 (7)
N80.4955 (4)0.33164 (19)0.5266 (2)0.0321 (7)
C120.7603 (5)0.3746 (2)0.3909 (3)0.0319 (8)
C130.4769 (5)0.3032 (2)0.3348 (3)0.0315 (8)
C140.2795 (5)0.2556 (2)0.3413 (3)0.0400 (8)
H14A0.17130.28840.37500.048*
H14B0.30370.20830.38630.048*
C150.1996 (6)0.2275 (2)0.2317 (3)0.0472 (10)
H15A0.18870.27350.18450.071*
H15B0.06300.20280.23930.071*
H15C0.29670.18870.20230.071*
C160.6252 (6)0.3124 (2)0.6007 (3)0.0353 (9)
H160.76330.29850.58320.042*
C170.5601 (6)0.3117 (2)0.7123 (3)0.0328 (8)
C180.3609 (6)0.3392 (2)0.7470 (3)0.0361 (9)
C190.3173 (6)0.3417 (2)0.8567 (3)0.0443 (9)
H190.18810.36200.87970.053*
C200.4612 (6)0.3147 (2)0.9307 (3)0.0462 (10)
H200.42960.31651.00340.055*
C210.6543 (6)0.2846 (2)0.8971 (3)0.0423 (9)
C220.7078 (6)0.2850 (2)0.7897 (3)0.0403 (9)
H220.84110.26750.76850.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0537 (2)0.0799 (3)0.02963 (19)0.0011 (2)0.00409 (16)0.0045 (2)
S10.0403 (5)0.0497 (6)0.0281 (4)0.0051 (4)0.0038 (4)0.0017 (4)
O10.0457 (16)0.074 (2)0.0334 (14)0.0183 (14)0.0076 (12)0.0048 (14)
N10.0402 (18)0.064 (2)0.0238 (16)0.0095 (16)0.0092 (13)0.0011 (15)
N20.0442 (18)0.058 (2)0.0251 (15)0.0021 (16)0.0042 (14)0.0043 (14)
N30.0337 (16)0.0378 (18)0.0226 (15)0.0022 (14)0.0057 (12)0.0023 (13)
N40.0364 (17)0.047 (2)0.0252 (16)0.0010 (14)0.0102 (13)0.0031 (14)
C10.034 (2)0.036 (2)0.0277 (19)0.0065 (16)0.0038 (15)0.0053 (15)
C20.035 (2)0.036 (2)0.0300 (19)0.0093 (16)0.0040 (15)0.0019 (15)
C30.047 (2)0.044 (2)0.041 (2)0.002 (2)0.0050 (16)0.003 (2)
C40.062 (3)0.047 (3)0.049 (2)0.013 (2)0.008 (2)0.0012 (19)
C50.0341 (19)0.033 (2)0.033 (2)0.0020 (16)0.0075 (16)0.0027 (16)
C60.0342 (19)0.031 (2)0.0260 (18)0.0051 (16)0.0071 (15)0.0024 (15)
C70.036 (2)0.035 (2)0.0315 (19)0.0044 (16)0.0048 (16)0.0009 (15)
C80.043 (2)0.043 (2)0.035 (2)0.0007 (18)0.0164 (19)0.0040 (17)
C90.048 (2)0.047 (2)0.0228 (18)0.0021 (19)0.0103 (16)0.0042 (16)
C100.043 (2)0.040 (2)0.0249 (18)0.0066 (17)0.0016 (16)0.0001 (16)
C110.0327 (19)0.043 (2)0.0275 (19)0.0011 (16)0.0046 (15)0.0031 (16)
Br20.0659 (3)0.0819 (3)0.0352 (2)0.0148 (2)0.01050 (19)0.0139 (2)
S20.0369 (5)0.0487 (6)0.0268 (4)0.0048 (4)0.0045 (4)0.0016 (4)
O20.0395 (16)0.067 (2)0.0380 (16)0.0097 (14)0.0065 (12)0.0014 (14)
N50.0415 (19)0.053 (2)0.0224 (16)0.0015 (15)0.0075 (13)0.0009 (14)
N60.0423 (19)0.055 (2)0.0233 (16)0.0035 (16)0.0007 (14)0.0044 (14)
N70.0297 (16)0.0400 (18)0.0248 (15)0.0023 (14)0.0068 (12)0.0010 (13)
N80.0317 (16)0.0435 (19)0.0213 (16)0.0013 (14)0.0081 (13)0.0012 (13)
C120.0308 (19)0.042 (2)0.0233 (17)0.0038 (16)0.0039 (14)0.0010 (15)
C130.034 (2)0.037 (2)0.0237 (18)0.0016 (16)0.0003 (15)0.0048 (15)
C140.0397 (19)0.043 (2)0.0373 (19)0.0010 (18)0.0062 (15)0.0065 (17)
C150.054 (2)0.041 (3)0.047 (2)0.0062 (19)0.0110 (19)0.0010 (19)
C160.042 (2)0.038 (2)0.0264 (19)0.0009 (17)0.0117 (17)0.0011 (16)
C170.039 (2)0.034 (2)0.0251 (18)0.0053 (16)0.0059 (15)0.0012 (15)
C180.043 (2)0.033 (2)0.032 (2)0.0094 (17)0.0074 (17)0.0015 (16)
C190.049 (2)0.052 (2)0.032 (2)0.0018 (19)0.0139 (18)0.0057 (18)
C200.059 (3)0.053 (3)0.0261 (19)0.015 (2)0.0159 (18)0.0049 (17)
C210.053 (2)0.049 (2)0.0247 (18)0.0162 (19)0.0019 (17)0.0030 (16)
C220.041 (2)0.043 (2)0.037 (2)0.0005 (18)0.0072 (17)0.0034 (17)
Geometric parameters (Å, º) top
Br1—C101.896 (4)Br2—C211.901 (4)
S1—C11.673 (4)S2—C121.672 (4)
O1—C71.356 (4)O2—C181.343 (4)
O1—H1A0.8200O2—H20.8200
N1—C11.336 (4)N5—C121.352 (4)
N1—N21.383 (4)N5—N61.367 (4)
N1—H10.8600N5—H5A0.8600
N2—C21.288 (4)N6—C131.303 (4)
N3—C11.380 (4)N7—C121.374 (4)
N3—C21.391 (4)N7—C131.379 (4)
N3—N41.403 (4)N7—N81.404 (4)
N4—C51.275 (4)N8—C161.271 (4)
C2—C31.474 (5)C13—C141.476 (5)
C3—C41.527 (5)C14—C151.525 (5)
C3—H3A0.9700C14—H14A0.9700
C3—H3B0.9700C14—H14B0.9700
C4—H4A0.9600C15—H15A0.9600
C4—H4B0.9600C15—H15B0.9600
C4—H4C0.9600C15—H15C0.9600
C5—C61.461 (5)C16—C171.453 (5)
C5—H50.9300C16—H160.9300
C6—C71.393 (5)C17—C181.408 (5)
C6—C111.394 (5)C17—C221.409 (5)
C7—C81.392 (5)C18—C191.396 (5)
C8—C91.384 (5)C19—C201.366 (5)
C8—H80.9300C19—H190.9300
C9—C101.390 (5)C20—C211.384 (5)
C9—H90.9300C20—H200.9300
C10—C111.379 (5)C21—C221.382 (5)
C11—H110.9300C22—H220.9300
C7—O1—H1A109.5C18—O2—H2109.5
C1—N1—N2114.3 (3)C12—N5—N6114.6 (3)
C1—N1—H1122.8C12—N5—H5A122.7
N2—N1—H1122.8N6—N5—H5A122.7
C2—N2—N1104.4 (3)C13—N6—N5104.3 (3)
C1—N3—C2108.9 (3)C12—N7—C13109.7 (3)
C1—N3—N4127.7 (3)C12—N7—N8127.4 (3)
C2—N3—N4122.8 (3)C13—N7—N8122.3 (3)
C5—N4—N3114.8 (3)C16—N8—N7114.8 (3)
N1—C1—N3102.2 (3)N5—C12—N7101.5 (3)
N1—C1—S1129.1 (3)N5—C12—S2128.7 (3)
N3—C1—S1128.7 (3)N7—C12—S2129.8 (3)
N2—C2—N3110.2 (3)N6—C13—N7109.9 (3)
N2—C2—C3126.3 (3)N6—C13—C14126.4 (3)
N3—C2—C3123.5 (3)N7—C13—C14123.7 (3)
C2—C3—C4112.1 (3)C13—C14—C15112.8 (3)
C2—C3—H3A109.2C13—C14—H14A109.0
C4—C3—H3A109.2C15—C14—H14A109.0
C2—C3—H3B109.2C13—C14—H14B109.0
C4—C3—H3B109.2C15—C14—H14B109.0
H3A—C3—H3B107.9H14A—C14—H14B107.8
C3—C4—H4A109.5C14—C15—H15A109.5
C3—C4—H4B109.5C14—C15—H15B109.5
H4A—C4—H4B109.5H15A—C15—H15B109.5
C3—C4—H4C109.5C14—C15—H15C109.5
H4A—C4—H4C109.5H15A—C15—H15C109.5
H4B—C4—H4C109.5H15B—C15—H15C109.5
N4—C5—C6121.3 (3)N8—C16—C17120.8 (3)
N4—C5—H5119.4N8—C16—H16119.6
C6—C5—H5119.4C17—C16—H16119.6
C7—C6—C11119.7 (3)C18—C17—C22118.7 (3)
C7—C6—C5123.2 (3)C18—C17—C16123.3 (3)
C11—C6—C5117.0 (3)C22—C17—C16117.9 (3)
O1—C7—C8116.6 (3)O2—C18—C19117.3 (3)
O1—C7—C6123.9 (3)O2—C18—C17123.3 (3)
C8—C7—C6119.6 (3)C19—C18—C17119.4 (4)
C9—C8—C7120.5 (3)C20—C19—C18121.1 (4)
C9—C8—H8119.7C20—C19—H19119.4
C7—C8—H8119.7C18—C19—H19119.4
C8—C9—C10119.6 (3)C19—C20—C21119.8 (3)
C8—C9—H9120.2C19—C20—H20120.1
C10—C9—H9120.2C21—C20—H20120.1
C11—C10—C9120.4 (3)C22—C21—C20120.8 (4)
C11—C10—Br1120.2 (3)C22—C21—Br2118.8 (3)
C9—C10—Br1119.4 (3)C20—C21—Br2120.3 (3)
C10—C11—C6120.1 (3)C21—C22—C17119.9 (3)
C10—C11—H11119.9C21—C22—H22120.0
C6—C11—H11119.9C17—C22—H22120.0
C1—N1—N2—C20.5 (4)C12—N5—N6—C130.2 (4)
C1—N3—N4—C551.3 (5)C12—N7—N8—C1651.8 (5)
C2—N3—N4—C5139.1 (4)C13—N7—N8—C16138.0 (4)
N2—N1—C1—N30.7 (4)N6—N5—C12—N70.7 (4)
N2—N1—C1—S1178.4 (3)N6—N5—C12—S2177.9 (3)
C2—N3—C1—N10.6 (4)C13—N7—C12—N51.3 (4)
N4—N3—C1—N1171.4 (3)N8—N7—C12—N5172.5 (3)
C2—N3—C1—S1178.5 (3)C13—N7—C12—S2177.3 (3)
N4—N3—C1—S17.7 (5)N8—N7—C12—S26.1 (5)
N1—N2—C2—N30.1 (4)N5—N6—C13—N71.0 (4)
N1—N2—C2—C3179.9 (3)N5—N6—C13—C14179.0 (3)
C1—N3—C2—N20.4 (4)C12—N7—C13—N61.6 (4)
N4—N3—C2—N2171.7 (3)N8—N7—C13—N6173.3 (3)
C1—N3—C2—C3179.7 (3)C12—N7—C13—C14179.6 (3)
N4—N3—C2—C38.3 (5)N8—N7—C13—C148.7 (5)
N2—C2—C3—C40.3 (6)N6—C13—C14—C151.0 (6)
N3—C2—C3—C4179.6 (3)N7—C13—C14—C15178.7 (3)
N3—N4—C5—C6176.1 (3)N7—N8—C16—C17176.8 (3)
N4—C5—C6—C77.9 (6)N8—C16—C17—C186.3 (6)
N4—C5—C6—C11172.8 (3)N8—C16—C17—C22176.1 (3)
C11—C6—C7—O1177.0 (3)C22—C17—C18—O2179.2 (3)
C5—C6—C7—O13.7 (6)C16—C17—C18—O23.3 (6)
C11—C6—C7—C82.4 (5)C22—C17—C18—C192.0 (6)
C5—C6—C7—C8176.9 (3)C16—C17—C18—C19175.6 (4)
O1—C7—C8—C9176.4 (3)O2—C18—C19—C20178.4 (4)
C6—C7—C8—C93.1 (6)C17—C18—C19—C202.8 (6)
C7—C8—C9—C101.1 (6)C18—C19—C20—C210.3 (6)
C8—C9—C10—C111.6 (6)C19—C20—C21—C223.0 (6)
C8—C9—C10—Br1177.2 (3)C19—C20—C21—Br2179.5 (3)
C9—C10—C11—C62.2 (6)C20—C21—C22—C173.7 (6)
Br1—C10—C11—C6176.5 (3)Br2—C21—C22—C17178.8 (3)
C7—C6—C11—C100.2 (5)C18—C17—C22—C211.2 (5)
C5—C6—C11—C10179.5 (3)C16—C17—C22—C21178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.862.453.309 (3)176
N5—H5A···S1ii0.862.443.302 (3)177
O1—H1A···N40.822.022.712 (4)141
O2—H2···N80.821.992.695 (4)143
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.862.453.309 (3)176.4
N5—H5A···S1ii0.862.443.302 (3)177.4
O1—H1A···N40.822.022.712 (4)141.4
O2—H2···N80.821.992.695 (4)143.2
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant Nos. 21001070 and 21271121) and the Province Natural Science Foundation of Shanxi Province of China (grant No. 2011021006–2).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orapen, G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N. (2004). Eur. J. Med. Chem. 39, 793–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemirbas, A., Sahin, D., Demirbas, N. & Alpay-Karaoglu, S. (2009). Eur. J. Med. Chem. 44, 2896–2903.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKochikyan, T. V., Samvelyan, M. A., Arutyunyan, E. V., Arutyunyan, V. S., Avetisyan, A. A., Malakyan, M. G., Vardevanyan, L. A. & Badzhinyan, S. A. (2011). Pharm. Chem. J. 44, 525–527.  Web of Science CrossRef CAS Google Scholar
First citationKumar, H., Javed, A. S., Khan, A. S. & Amir, M. (2008). Eur. J. Med. Chem. 43, 2688–2698.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPannu, A. P. S. & Hundal, M. S. (2011). J. Chem. Crystallogr. 41, 1447–1450.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopiołek, Ł., Kosikowska, U., Mazur, L., Dobosz, M. & Malm, A. (2013). Med. Chem. Res. 22, 3134–3147.  PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinghal, N., Sharma, P. K., Dudhe, R. & Kumar, N. (2011). J. Chem. Pharm. Res. 3, 126–133.  CAS Google Scholar
First citationSraa, A. M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 898–905.  Web of Science PubMed Google Scholar
First citationTodoulou, O., Papadaki-Valiraki, A., Ikeda, S. & De Clercq, E. (1994). Eur. J. Med. Chem. 29E, 611–620.  CrossRef Web of Science Google Scholar
First citationWu, X., Yuan, C.-X., Ma, L., Zhai, K.-L. & Zhu, M.-L. (2012). Acta Cryst. E68, o1674.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 8| August 2014| Pages o881-o882
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds